A121630
Finite sum involving signless Stirling numbers of the first kind and the Bell numbers. Appears in the process of normal ordering of n-th power of (a)^3*(a+*a), where a+ and a are boson creation and annihilation operators, respectively.
Original entry on oeis.org
1, 4, 29, 302, 4089, 68056, 1342949, 30635074, 792915057, 22952573484, 734630159341, 25757268041814, 981687991859689, 40407710444419072, 1786311057929722549, 84404172618241446506, 4244839086310722228449
Offset: 0
-
CoefficientList[Series[E^(((1-3*x)^(-1/3))-1)/(1-3*x), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Mar 14 2014 *)
A121631
Finite sum involving signless Stirling numbers of the first kind and the Bell numbers. Appears in the process of normal ordering of n-th power of (a)^4*(a+*a), where a+ and a are boson creation and annihilation operators, respectively.
Original entry on oeis.org
1, 5, 46, 613, 10679, 229576, 5868715, 173833661, 5853205468, 220767370219, 9219128625851, 422221005543250, 21041188313139901, 1133454896301865073, 65627299232007207934, 4064319309355535125201, 268077821490093243979235
Offset: 0
-
CoefficientList[Series[E^(((1-4*x)^(-1/4))-1)/(1-4*x), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Mar 14 2014 *)
A239301
E.g.f.: exp((1-5*x)^(-1/5)-1)/(1-5*x).
Original entry on oeis.org
1, 6, 67, 1090, 23265, 614302, 19323163, 705288522, 29296813825, 1364468928022, 70414831288275, 3987980655931570, 245910243177940897, 16399345182278307822, 1176033825828643912747, 90242683036826223141370, 7377887848681408224106497, 640225878087732419052020134
Offset: 0
-
CoefficientList[Series[E^((1-5*x)^(-1/5)-1)/(1-5*x),{x,0,20}],x]*Range[0,20]!
A123332
a(n) = 2^n*(Gamma(n+1/2)/Gamma(1/2) + (n-1)!).
Original entry on oeis.org
3, 7, 31, 201, 1713, 18075, 227295, 3317265, 55103265, 1026318195, 21181092975, 479733356025, 11829834687825, 315481555464075, 9046941599670975, 277598531343758625, 9075051786962786625, 314884420627497595875, 11557482238066613223375, 447385119579169194047625
Offset: 1
-
Table[2^n*(Gamma[n + 1/2]/Gamma[1/2] + (n - 1)!), {n, 0, 50}] (* G. C. Greubel, Oct 04 2017 *)
-
a(n) = round(2^n*(gamma(n+1/2)/gamma(1/2) + (n-1)!)); \\ Michel Marcus, Oct 05 2017
Showing 1-4 of 4 results.
Comments