cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A121763 Numbers n such that 6*n-1 is prime while 6*n+1 is composite.

Original entry on oeis.org

4, 8, 9, 14, 15, 19, 22, 28, 29, 39, 42, 43, 44, 49, 53, 59, 60, 64, 65, 67, 74, 75, 78, 80, 82, 84, 85, 93, 94, 98, 99, 108, 109, 113, 114, 117, 120, 124, 127, 129, 133, 140, 144, 148, 152, 155, 157, 158, 159, 162, 163, 164, 169, 183, 184, 185, 194, 197, 198, 199
Offset: 1

Views

Author

Lekraj Beedassy, Aug 20 2006

Keywords

Comments

Entries of A024898 which are not in A002822 or equivalently, entries of A046954 which are not in A060461.

Crossrefs

Programs

  • GAP
    Filtered([1..250], k-> IsPrime(6*k-1) and not IsPrime(6*k+1)); # G. C. Greubel, Feb 20 2019
  • Magma
    [n: n in [1..250] | IsPrime(6*n-1) and not IsPrime(6*n+1)]; // G. C. Greubel, Feb 20 2019
    
  • Mathematica
    Select[Range[200], PrimeQ[6# -1] && !PrimeQ[6# +1] &] (* Ray Chandler, Aug 22 2006 *)
  • PARI
    for(n=1, 250, if(isprime(6*n-1) && !isprime(6*n+1), print1(n", "))) \\ G. C. Greubel, Feb 20 2019
    
  • Sage
    [n for n in (1..250) if is_prime(6*n-1) and not is_prime(6*n+1)] # G. C. Greubel, Feb 20 2019
    

Extensions

Extended by Ray Chandler, Aug 22 2006

A121764 Single (or isolated or non-twin) primes of form 6n + 1.

Original entry on oeis.org

37, 67, 79, 97, 127, 157, 163, 211, 223, 277, 307, 331, 337, 367, 373, 379, 397, 409, 439, 457, 487, 499, 541, 547, 577, 607, 613, 631, 673, 691, 709, 727, 733, 739, 751, 757, 769, 787, 853, 877, 907, 919, 937, 967, 991, 997, 1009, 1039, 1069, 1087, 1117
Offset: 1

Views

Author

Lekraj Beedassy, Aug 20 2006

Keywords

Comments

For the first 30000 terms a(n) > A121762(n), see plot A121764(n) - A121762(n). But is it so for all n? - Zak Seidov, Apr 25 2015
Subsequence of A002476. - Michel Marcus, Apr 26 2015

Crossrefs

Programs

  • Magma
    [n: n in [1..1150] | (n mod 6 eq 1) and not IsPrime(n-2) and  IsPrime(n)]; // G. C. Greubel, Feb 26 2019
    
  • Mathematica
    Select[Table[6n + 1, {n, 200}], PrimeQ[#] && !PrimeQ[#-2] &] (* Ray Chandler, Aug 22 2006 *)
    Select[Prime[Range[200]],Mod[#,6]==1&&NoneTrue[#+{2,-2},PrimeQ]&] (* Harvey P. Dale, Jul 16 2021 *)
  • PARI
    {is(n)=n%6==1 && isprime(n) && !isprime(n-2)}; \\ G. C. Greubel, Feb 26 2019
    
  • Sage
    [n for n in (1..1150) if mod(n,6)==1 and not is_prime(n-2) and is_prime(n)] # G. C. Greubel, Feb 26 2019

Extensions

Extended by Ray Chandler, Aug 22 2006
Showing 1-2 of 2 results.