cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A121764 Single (or isolated or non-twin) primes of form 6n + 1.

Original entry on oeis.org

37, 67, 79, 97, 127, 157, 163, 211, 223, 277, 307, 331, 337, 367, 373, 379, 397, 409, 439, 457, 487, 499, 541, 547, 577, 607, 613, 631, 673, 691, 709, 727, 733, 739, 751, 757, 769, 787, 853, 877, 907, 919, 937, 967, 991, 997, 1009, 1039, 1069, 1087, 1117
Offset: 1

Views

Author

Lekraj Beedassy, Aug 20 2006

Keywords

Comments

For the first 30000 terms a(n) > A121762(n), see plot A121764(n) - A121762(n). But is it so for all n? - Zak Seidov, Apr 25 2015
Subsequence of A002476. - Michel Marcus, Apr 26 2015

Crossrefs

Programs

  • Magma
    [n: n in [1..1150] | (n mod 6 eq 1) and not IsPrime(n-2) and  IsPrime(n)]; // G. C. Greubel, Feb 26 2019
    
  • Mathematica
    Select[Table[6n + 1, {n, 200}], PrimeQ[#] && !PrimeQ[#-2] &] (* Ray Chandler, Aug 22 2006 *)
    Select[Prime[Range[200]],Mod[#,6]==1&&NoneTrue[#+{2,-2},PrimeQ]&] (* Harvey P. Dale, Jul 16 2021 *)
  • PARI
    {is(n)=n%6==1 && isprime(n) && !isprime(n-2)}; \\ G. C. Greubel, Feb 26 2019
    
  • Sage
    [n for n in (1..1150) if mod(n,6)==1 and not is_prime(n-2) and is_prime(n)] # G. C. Greubel, Feb 26 2019

Extensions

Extended by Ray Chandler, Aug 22 2006