A120443
Number of (undirected) Hamiltonian paths in the n X n grid graph.
Original entry on oeis.org
1, 4, 20, 276, 4324, 229348, 13535280, 3023313284, 745416341496, 730044829512632, 786671485270308848, 3452664855804347354220, 16652005717670534681315580, 331809088406733654427925292528, 7263611367960266490262600117251524
Offset: 1
From _Robert FERREOL_, Apr 03 2019: (Start)
a(3) = 20:
there are 4 paths similar to
+ - + - +
|
+ - + - +
|
+ - + - +
8 paths similar to
+ - + - +
| |
+ + - +
| |
+ + - +
and 8 paths similar to
+ - + - +
| |
+ + +
| | |
+ + - +
(End)
- Jesper L. Jacobsen, Table of n, a(n) for n = 1..17
- J. L. Jacobsen, Exact enumeration of Hamiltonian circuits, walks and chains in two and three dimensions, J. Phys. A: Math. Theor. 40 (2007) 14667-14678.
- J.-M. Mayer, C. Guez and J. Dayantis, Exact computer enumeration of the number of Hamiltonian paths in small square plane lattices, Physical Review B, Vol. 42 Number 1, 1990.
- Eric Weisstein's World of Mathematics, Grid Graph
- Eric Weisstein's World of Mathematics, Hamiltonian Path
- Index entries for sequences related to graphs, Hamiltonian
More terms from Jesper L. Jacobsen (jesper.jacobsen(AT)u-psud.fr), Dec 12 2007
A000532
Number of Hamiltonian paths from NW to SW corners in an n X n grid.
Original entry on oeis.org
1, 1, 2, 8, 86, 1770, 88418, 8934966, 2087813834, 1013346943033, 1111598871478668, 2568944901392936854, 13251059359839620127088, 145194816279817259193401518, 3524171261632305641165676374930, 182653259988707123426135593460533473
Offset: 1
- Oliver R. Bellwood, Table of n, a(n) for n = 1..20 (first 19 terms from KeyTo9(AT)Fans, Ed Wynn)
- KeyTo9(AT)Fans, Counting paths in a grid - Chinese web page giving the sequence up to 18 items.
- Douglas M. McKenna, Tendril Motifs for Space-Filling, Half-Domino Curves, in: Bridges Finland Conference Proceedings, 2016, pp. 119-126.
- Douglas M. McKenna, Are Maximally Unbalanced Hilbert-Style Square-Filling Curve Motifs a Drawing Medium?, Bridges Conf. Proc.; Math., Art, Music, Architecture, Culture (2023) 91-98.
A121789
"Spanning Hamiltonian walks" on the square lattice (see Jensen web site for further information).
Original entry on oeis.org
2, 8, 34, 650, 12014, 1016492, 83761994, 32647369000, 12227920752840, 22181389298814376, 38166266554504010420, 323646210116765453608746, 2574827340090912815899810042, 102299512403818451392332665527950
Offset: 1
A333323
Number of self-avoiding closed paths on an n X n grid which pass through NW and SE corners.
Original entry on oeis.org
1, 3, 42, 1799, 232094, 92617031, 115156685746, 442641690778179, 5224287477491915786, 188825256606226776728029, 20879416139356164466643759334, 7057757437924198729598570424130207, 7287699030020917172151307665469211016474, 22973720258279267139936821063450448822110219653
Offset: 2
a(2) = 1;
+--*
| |
*--+
a(3) = 3;
+--*--* +--*--* +--*
| | | | | |
*--* * * * * *--*
| | | | | |
*--+ *--*--+ *--*--+
- Anthony J. Guttmann and Iwan Jensen, Table of n, a(n) for n = 2..27
- Anthony J. Guttmann and Iwan Jensen, Self-avoiding walks and polygons crossing a domain on the square and hexagonal lattices, arXiv:2208.06744 [math-ph], Aug 13 2022, Table D2 (with offset 1).
- Anthony J. Guttmann and Iwan Jensen, The gerrymander sequence, or A348456, arXiv:2211.14482 [math.CO], 2022.
-
# Using graphillion
from graphillion import GraphSet
import graphillion.tutorial as tl
def A333323(n):
universe = tl.grid(n - 1, n - 1)
GraphSet.set_universe(universe)
cycles = GraphSet.cycles().including(1).including(n * n)
return cycles.len()
print([A333323(n) for n in range(2, 10)])
A288032
Number of (undirected) paths in the n X n grid graph.
Original entry on oeis.org
0, 12, 322, 14248, 1530196, 436619868, 343715004510, 766012555199052, 4914763477312679808, 91781780911712980966236, 5028368533802124263609489682, 813124448051069045700905179168520
Offset: 1
A333509
Square array T(n,k), n >= 1, k >= 2, read by antidiagonals, where T(n,k) is the number of self-avoiding walks in the n X k grid graph which start at any of the n vertices on left side of the graph and terminate at any of the n vertices on the right side.
Original entry on oeis.org
1, 1, 8, 1, 16, 29, 1, 32, 95, 80, 1, 64, 313, 426, 195, 1, 128, 1033, 2320, 1745, 444, 1, 256, 3411, 12706, 16347, 6838, 969, 1, 512, 11265, 69662, 154259, 112572, 25897, 2056, 1, 1024, 37205, 381964, 1454495, 1859660, 752245, 95292, 4279
Offset: 1
Square array T(n,k) begins:
1, 1, 1, 1, 1, ...
8, 16, 32, 64, 128, ...
29, 95, 313, 1033, 3411, ...
80, 426, 2320, 12706, 69662, ...
195, 1745, 16347, 154259, 1454495, ...
444, 6838, 112572, 1859660, 30549774, ...
-
# Using graphillion
from graphillion import GraphSet
import graphillion.tutorial as tl
def A(start, goal, n, k):
universe = tl.grid(n - 1, k - 1)
GraphSet.set_universe(universe)
paths = GraphSet.paths(start, goal)
return paths.len()
def A333509(n, k):
if n == 1: return 1
s = 0
for i in range(1, n + 1):
for j in range(k * n - n + 1, k * n + 1):
s += A(i, j, k, n)
return s
print([A333509(j + 1, i - j + 2) for i in range(9) for j in range(i + 1)])
A236753
Number of simple (non-intersecting) directed paths on the grid graph P_n X P_n.
Original entry on oeis.org
1, 28, 653, 28512, 3060417, 873239772, 687430009069, 1532025110398168, 9829526954625359697, 183563561823425961932572, 10056737067604248527218979485, 1626248896102138091401810358337184
Offset: 1
For n=2 there are 4 zero length paths (one for each vertex), 8 paths with 1 one edge, 8 paths with 2 edges and 8 paths with 3 edges, so a(2)=28. - _Andrew Howroyd_, May 27 2017
Cf.
A236690 (includes diagonal edges).
A121786
"Cow patches" on the square lattice (see Jensen web site for further information).
Original entry on oeis.org
1, 7, 160, 11408, 2522191, 1718769373, 3598611604598, 23098353998190640, 453839082673896579243, 27266319759961440667165921, 5005013940387988257218110301496, 2805250606288167736619664411164848668
Offset: 1
A363577
Number of inequivalent Hamiltonian paths starting in the lower left corner of an n X n grid graph (paths differing only by rotations and reflections are regarded as equivalent).
Original entry on oeis.org
1, 1, 3, 23, 347, 10199, 683227, 85612967, 25777385143, 14396323278040, 19799561204761862, 50351228336401026361, 319210377672595552740369, 3736517399241599771428011100, 109790442395888863208285555153329, 5952238893391106787883489313797219949
Offset: 1
There are 3 paths for n=3:
+--+--+ +--+--+ +--+ +
| | | | | | |
+ + + + +--+ + + +
| | | | | | | |
+ +--+ + +--+ + +--+
A fourth path:
+--+--+
|
+--+ +
| | |
+ +--+
is the same as the second one in the row above after a 90-degree rotation.
All paths starting E are the same as the corresponding ones starting N after reflection in the forward diagonal.
Showing 1-9 of 9 results.
Comments