A128446
Quotients A122000(p-1) / (2^p - 1), where p = prime(n) for n > 1.
Original entry on oeis.org
1, 882850585445281, 28084773172609134470952326813135521948919663474715912134590894817085103016117634792155856629828598766188378241
Offset: 2
-
a[n_] := Module[{p = Prime[n]}, ((2^(p-1) - 1)^(2^(p-1) - 1) + 1)/(2^(p-1)*(2^p-1))]; Array[a, 3, 2] (* Amiram Eldar, Jul 17 2025 *)
A014566
Sierpiński numbers of the first kind: n^n + 1.
Original entry on oeis.org
2, 2, 5, 28, 257, 3126, 46657, 823544, 16777217, 387420490, 10000000001, 285311670612, 8916100448257, 302875106592254, 11112006825558017, 437893890380859376, 18446744073709551617, 827240261886336764178, 39346408075296537575425, 1978419655660313589123980
Offset: 0
- Graham Everest, Alf van der Poorten, Igor Shparlinski and Thomas Ward, Recurrence Sequences, Amer. Math. Soc., 2003; see esp. p. 255.
- Maohua Le, Primes in the sequences n^n+1 and n^n-1, Smarandache Notions Journal, Vol. 10, No. 1-2-3, 1999, pp. 156-157.
- Paulo Ribenboim, The Book of Prime Number Records, 2nd ed. New York: Springer-Verlag, p. 74, 1989.
A124899
Sierpinski quotient ((2n-1)^(2n-1) + 1)/(2n) = A014566(2n-1)/(2n).
Original entry on oeis.org
1, 7, 521, 102943, 38742049, 23775972551, 21633936185161, 27368368148803711, 45957792327018709121, 98920982783015679456199, 265572137199362841880960201, 870019499993663001431459704607, 3416070845000481662841943594125601
Offset: 1
Cf.
A014566 (Sierpinski numbers of the first kind: n^n + 1).
-
List([1..15],n->((2*n-1)^(2*n-1)+1)/(2*n)); # Muniru A Asiru, Apr 08 2018
-
seq(((2*n-1)^(2*n-1)+1)/(2*n),n=1..20); # Muniru A Asiru, Apr 08 2018
-
Table[((2n-1)^(2n-1)+1)/(2n),{n,1,20}]
-
a(n) = ((2*n-1)^(2*n-1) + 1)/(2*n); \\ Michel Marcus, Apr 08 2018
Showing 1-3 of 3 results.
Comments