A122525 Triangle read by rows: G(s, rho) = ((s-1)!/s)*Sum_{i=0..s-1} ((s-i)/i!)*(s*rho)^i.
1, 1, 1, 2, 4, 3, 6, 18, 24, 16, 24, 96, 180, 200, 125, 120, 600, 1440, 2160, 2160, 1296, 720, 4320, 12600, 23520, 30870, 28812, 16807, 5040, 35280, 120960, 268800, 430080, 516096, 458752, 262144, 40320, 322560, 1270080, 3265920, 6123600, 8817984, 9920232, 8503056, 4782969
Offset: 1
Examples
G(5, rho) = 24 + 96*rho + 180*rho^2 + 200*rho^3 + 125*rho^4. The coefficients (24, 96, 180, 200, 125) give the 5th line of the triangle. Triangle begins: 1; 1, 1; 2, 4, 3; 6, 18, 24, 16; 24, 96, 180, 200, 125; 120, 600, 1440, 2160, 2160, 1296; 720, 4320, 12600, 23520, 30870, 28812, 16807; 5040, 35280, 120960, 268800, 430080, 516096, 458752, 262144; 40320, 322560, 1270080, 3265920, 6123600, 8817984, 9920232, 8503056, 4782969;
References
- Cooper, R. B. 1981, Introduction to Queueing Theory. Second ed., North Holland, New York.
- Harel, A. 1988. Sharp Bounds and Simple Approximations for the Erlang Delay and Loss Formulas. Management Science, Vol. 34, 959-972.
- Harel, A. and P. Zipkin. 1987a. Strong Convexity Results for Queueing Systems. Operations Research, Vol. 35, No. 3, 405-418.
- Harel, A. and P. Zipkin. 1987b. The Convexity of a General Performance Measure for the Multi-Server Queues. Journal of Applied Probability, Vol. 24, 725-736.
- Jagers, A. A. and E. A. van Doorn, 1991. Convexity of functions which are generalizations of the Erlang loss function and the Erlang delay function. SIAM Review. Vol. 33 (2), 281-282.
- Lee, H. L. and M. A. Cohen. 1983. A Note on the Convexity of Performance Measures of M/M/c Queueing Systems. Journal of Applied Probability, Vol. 20, 920-923.
- Medhi, J. 2003. Stochastic Models in Queueing Theory. Second ed., Academic Press, New York.
- Smith, D.R. and W. Whitt. 1981. Resource Sharing for Efficiency in Traffic Systems. Bell System Technical Journal, Vol. 60, No. 1, 39-55.
Links
- Alois P. Heinz, Rows n = 1..141, flattened
- C. W. J. Beenakker, Entropy and singular-value moments of products of truncated random unitary matrices, arXiv:2501.11085 [quant-ph], 2025. See p. 6.
- E. Brockmeyer, H. L. Halstrøm and Arne Jensen, The Life and Works of A.K. Erlang
Programs
-
Maple
G:= proc(s) G(s):= (s-1)!/s*add((s-i)/i!*(s*rho)^i, i=0..(s-1)) end: T:= n-> coeff(G(n), rho, k): seq(seq(T(n, k), k=0..n-1), n=1..10); # Alois P. Heinz, Sep 08 2012
-
Mathematica
(* First program *) nn=6; t=Sum[n^(n-1)x^n/n!,{n,1,nn}]; f[list_]:=Select[list,#>0&]; Map[f,Map[Reverse,Range[0,nn]!CoefficientList[Series[Exp[t]/(1-y t),{x,0,nn}],{x,y}]]]//Grid (* Geoffrey Critzer, Sep 08 2012 *) (* Second program *) T[n_, k_]:= Coefficient[Series[((n-1)!/n)*Sum[(n-j)*(n*x)^j/j!, {j,0,n-1}], {x,0,30}], x, k]; Table[T[n, k], {n,10}, {k,0,n-1}]//Flatten (* G. C. Greubel, Jan 06 2022 *)
-
Sage
def A122525(n,k): return ( (factorial(n-1)/n)*sum((n-j)*(n*x)^j/factorial(j) for j in (0..n-1)) ).series(x, n+1).list()[k] flatten([[A122525(n,k) for k in (0..n-1)] for n in (1..12)]) # G. C. Greubel, Jan 06 2022
Formula
An equivalent expression for G(s, rho) that is often used is: G(s, rho) = (1-rho)*(s-1)!*Sum_{i=0..s-1} (s^i*rho^i/i!) + rho^s*s^(s-1).
For s > 0 and rho > 0 one can use the expression: G(s, rho) = (exp(s*rho)*s*rho*(1-rho)*(s-1)*Gamma(s-1, s*rho) + rho^s*s^s)/(s*rho).
For s > 0 and rho > 0 one can also use the integral representation G(s, rho) = ((s*rho)^s/s)*Integral_{t=0..oo} rho*s*exp(-rho*s*t)*t*(1+t)^(s-1) dt.
Multiplying the n-th row entries by n+1 results in triangle A066324 in row reversed form. - Peter Bala, Sep 30 2011
Row generating polynomials are given by (1/n)*D^n(1/(1-x*t)) evaluated at x = 0, where D is the operator exp(x)/(1-x)*d/dx. - Peter Bala, Dec 27 2011
Comments