A122535 Smallest prime of a triple of successive primes, where the middle one is the arithmetic mean of the other two.
3, 47, 151, 167, 199, 251, 257, 367, 557, 587, 601, 647, 727, 941, 971, 1097, 1117, 1181, 1217, 1361, 1499, 1741, 1747, 1901, 2281, 2411, 2671, 2897, 2957, 3301, 3307, 3631, 3727, 4007, 4397, 4451, 4591, 4651, 4679, 4987, 5101, 5107, 5297, 5381, 5387
Offset: 1
Keywords
Examples
The prime 7 is not in the list, because in the triple (7, 11, 13) of successive primes, 11 is not equal (7 + 13)/2 = 10. The second term, 47, is the first prime in the triple (47, 53, 59) of primes, where 53 is the mean of 47 and 59.
Links
Programs
-
Haskell
a122535 = a000040 . a064113 -- Reinhard Zumkeller, Jan 20 2012
-
Mathematica
Clear[d2, d1, k]; d2[n_] = Prime[n + 2] - 2*Prime[n + 1] + Prime[n]; d1[n_] = Prime[n + 1] - Prime[n]; k[n_] = -d2[n]/(1 + d1[n])^(3/2); Flatten[Table[If[k[n] == 0, Prime[n], {}], {n, 1, 1000}]] (* Roger L. Bagula, Nov 13 2008 *) Transpose[Select[Partition[Prime[Range[750]], 3, 1], #[[2]] == (#[[1]] + #[[3]])/2 &]][[1]] (* Harvey P. Dale, Jan 09 2011 *)
-
PARI
A122535()={n=3;ctr=0;while(ctr<50, avgg=( prime(n-2)+prime(n) )/2; if( prime(n-1) ==avgg, ctr+=1;print( ctr," ",prime(n-2) ) );n+=1); } \\ Bill McEachen, Jan 19 2015
Formula
Extensions
More terms from Roger L. Bagula, Nov 13 2008
Definition rephrased by R. J. Mathar, Dec 20 2008
Comments