A123094 Sum of first n 12th powers.
0, 1, 4097, 535538, 17312754, 261453379, 2438235715, 16279522916, 84998999652, 367428536133, 1367428536133, 4505856912854, 13421957361110, 36720042483591, 93413954858887, 223160292749512, 504635269460168, 1087257506689929, 2244088888116105, 4457403807182266
Offset: 0
Links
- T. D. Noe, Table of n, a(n) for n = 0..1000
- Bruno Berselli, A description of the recursive method in Formula lines (first formula): website Matem@ticamente (in Italian).
Crossrefs
Programs
-
Magma
[(&+[j^12: j in [0..n]]): j in [0..30]]; // G. C. Greubel, Jul 21 2021
-
Maple
[seq(add(i^12, i=1..n), n=0..18)];
-
Mathematica
Table[Sum[k^12, {k, n}], {n, 0, 30}] (* Vladimir Joseph Stephan Orlovsky, Aug 14 2008 *) Accumulate[Range[0,30]^12] (* Harvey P. Dale, Apr 26 2011 *)
-
Python
A123094_list, m = [0], [479001600, -2634508800, 6187104000, -8083152000, 6411968640, -3162075840, 953029440, -165528000, 14676024, -519156, 4094, -1, 0 , 0] for _ in range(10**2): for i in range(13): m[i+1]+= m[i] A123094_list.append(m[-1]) # Chai Wah Wu, Nov 05 2014
-
Sage
[bernoulli_polynomial(n,13)/13 for n in range(1, 30)] # Zerinvary Lajos, May 17 2009
Formula
a(n) = n * (n+1) * (2*n+1) * (105*n^10 +525*n^9 +525*n^8 -1050*n^7 -1190*n^6 +2310*n^5 +1420*n^4 -3285*n^3 -287*n^2 +2073*n -691)/2730. - Bruno Berselli, Oct 03 2010
a(n) = (-1)*Sum_{j=1..12} j*Stirling1(n+1,n+1-j)*Stirling2(n+12-j,n). - Mircea Merca, Jan 25 2014