A123095 Sum of first n 11th powers.
0, 1, 2049, 179196, 4373500, 53201625, 415998681, 2393325424, 10983260016, 42364319625, 142364319625, 427675990236, 1170684360924, 2962844754961, 7012409924625, 15662165784000, 33254351828416, 67526248136049, 131794658215281, 248284917113500, 453084917113500
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Bruno Berselli, A description of the recursive method in Comments lines: website Matem@ticamente (in Italian).
- Index entries for linear recurrences with constant coefficients, signature (13,-78,286,-715,1287,-1716,1716,-1287,715,-286,78,-13,1).
Crossrefs
Programs
-
Magma
[(&+[j^11: j in [0..n]]): n in [0..30]]; // G. C. Greubel, Jul 21 2021
-
Maple
[seq(add(i^11, i=1..n), n=0..20)]; a[0]:=0:a[1]:=1:for n from 2 to 50 do a[n]:=a[n-1]+n^11 od: seq(a[n], n=0..13); # Zerinvary Lajos, Feb 22 2008
-
Mathematica
Table[Sum[k^11, {k, n}], {n, 0, 30}] (* Vladimir Joseph Stephan Orlovsky, Aug 14 2008 *) Accumulate[Range[0,20]^11] (* Harvey P. Dale, Sep 17 2021 *)
-
Python
A123095_list, m = [0], [39916800, -199584000, 419126400, -479001600, 322494480, -129230640, 29607600, -3498000, 171006, -2046, 1, 0 , 0] for _ in range(10**2): for i in range(12): m[i+1]+= m[i] A123095_list.append(m[-1]) # Chai Wah Wu, Nov 05 2014
-
Sage
[(bernoulli_polynomial(n+1, 12) - bernoulli(12))/12 for n in (0..30)] # G. C. Greubel, Jul 21 2021
Formula
a(n) = n^2*(n+1)^2*(2*n^8 +8*n^7 +4*n^6 -16*n^5 -5*n^4 +26*n^3 -3*n^2 -20*n +10)/24. - Bruno Berselli, Oct 03 2010
G.f.: x*(x^10 +2036*x^9 +152637*x^8 +2203488*x^7 +9738114*x^6 +15724248*x^5 +9738114*x^4 +2203488*x^3 +152637*x^2 +2036*x +1)/(1-x)^13. - Colin Barker, May 27 2012
a(n) = (-1)*Sum_{j=1..11} j*Stirling1(n+1,n+1-j)*Stirling2(n+11-j,n). - Mircea Merca, Jan 25 2014
a(n) = 1728*A006542(n+2)^2 + 216*A288876(n-2) + 96*A006542(n+2) + A000537(n). - Yasser Arath Chavez Reyes, May 25 2024