cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A123110 Triangle T(n,k), 0 <= k <= n, read by rows given by [0,1,0,0,0,0,0,0,0,0,...] DELTA [1,0,-1,1,0,0,0,0,0,0,...] where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 0

Views

Author

Philippe Deléham, Sep 28 2006

Keywords

Comments

Diagonal sums give A123108. - Philippe Deléham, Oct 08 2009

Examples

			Triangle begins:
  1;
  0, 1;
  0, 1, 1;
  0, 1, 1, 1;
  0, 1, 1, 1, 1;
  0, 1, 1, 1, 1, 1;
  0, 1, 1, 1, 1, 1, 1;
  0, 1, 1, 1, 1, 1, 1, 1;
  0, 1, 1, 1, 1, 1, 1, 1, 1;
  0, 1, 1, 1, 1, 1, 1, 1, 1, 1;
		

Crossrefs

Essentially the same sequence as A114607.
Also essentially the same as A023532. - R. J. Mathar, Jun 18 2008
After the initial a(0)=1, the characteristic function of A014132.
Cf. A010054.

Programs

Formula

Sum_{k=0..n} T(n,k)*x^k = A000007(n), A028310(n), A095121(n), A123109(n) for x=0,1,2,3 respectively.
G.f.: (1-x+y*x^2)/(1-(1+y)*x+y*x^2). - Philippe Deléham, Nov 01 2011
From Tom Copeland, Nov 10 2012: (Start)
O.g.f. for row polynomials: 1 + (t/(1-t))*(1/(1-x)-1/(1-x*t)) = 1 + t*x + (t+t^2)*x^2 + ....
E.g.f. for row polynomials: 1 + (t/(1-t))*(e^x-e^(t*x)) = 1 + t*x + (t+t^2)*x^2/2 + .... (End)
a(0) = 1; for n > 0, a(n) = 1 - A010054(n). [As a flat sequence] - Antti Karttunen, Jan 19 2025

A086346 On a 3 X 3 board, the number of n-move paths for a chess king ending in a given corner square.

Original entry on oeis.org

1, 3, 18, 80, 400, 1904, 9248, 44544, 215296, 1039104, 5018112, 24227840, 116985856, 564850688, 2727354368, 13168803840, 63584665600, 307013812224, 1482394042368, 7157631156224, 34560101318656, 166870928850944, 805724122775552, 3890380202311680, 18784417308737536, 90699190027419648
Offset: 0

Views

Author

Zak Seidov, Jul 17 2003

Keywords

Comments

From Johannes W. Meijer, Aug 01 2010: (Start)
The a(n) represent the number of n-move paths of a chess king on a 3 X 3 board that end or start in a given corner square m (m = 1, 3, 7, 9). To determine the a(n) we can either sum the components of the column vector A^n[k,m], with A the adjacency matrix of the king's graph, or we can sum the components of the row vector A^n[m,k], see the Maple program.
Inverse binomial transform of A079291 (without the leading 0).
(End)
From R. J. Mathar, Oct 12 2010: (Start)
The row n=3 of an array counting king walks on an n X n board with k steps, starting from a corner:
1, 3, 9, 27, 81, 243, 729, 2187, 6561, 19683, 59049, ...;
1, 3, 18, 80, 400, 1904, 9248, 44544, 215296, 1039104, 5018112, ...;
1, 3, 18, 105, 615, 3600, 21075, 123375, 722250, 4228125, 24751875, ...;
1, 3, 18, 105, 684, 4359, 28278, 182349, 1179792, 7622667, 49283802, ...;
1, 3, 18, 105, 684, 4550, 30807, 209867, 1434279, 9815190, 67209723, ...;
1, 3, 18, 105, 684, 4550, 31340, 218056, 1533712, 10829360, 76720288, ...;
1, 3, 18, 105, 684, 4550, 31340, 219555, 1559835, 11177190, 80573373, ...;
1, 3, 18, 105, 684, 4550, 31340, 219555, 1564080, 11259785, 81765550, ...;
1, 3, 18, 105, 684, 4550, 31340, 219555, 1564080, 11271876, 82025163, ...;
1, 3, 18, 105, 684, 4550, 31340, 219555, 1564080, 11271876, 82059768, ...;
1, 3, 18, 105, 684, 4550, 31340, 219555, 1564080, 11271876, 82059768, ...;
The partial sums along the rows are documented in A123109 (king walks with between 1 and k steps). (End)

References

  • Gary Chartrand, Introductory Graph Theory, pp. 217-221, 1984. [From Johannes W. Meijer, Aug 01 2010]

Crossrefs

Programs

  • Magma
    [2^(n-3)*(Evaluate(DicksonFirst(n+2,-1), 2) +2*(-1)^n): n in [0..30]]; // G. C. Greubel, Aug 18 2022
    
  • Maple
    with(LinearAlgebra):
    nmax:=19; m:=1;
    A[5]:= [1, 1, 1, 1, 0, 1, 1, 1, 1]:
    A:=Matrix([[0, 1, 0, 1, 1, 0, 0, 0, 0], [1, 0, 1, 1, 1, 1, 0, 0, 0], [0, 1, 0, 0, 1, 1, 0, 0, 0], [1, 1, 0, 0, 1, 0, 1, 1, 0], A[5], [0, 1, 1, 0, 1, 0, 0, 1, 1], [0, 0, 0, 1, 1, 0, 0, 1, 0], [0, 0, 0, 1, 1, 1, 1, 0, 1], [0, 0, 0, 0, 1, 1, 0, 1, 0]]):
    for n from 0 to nmax do B(n):=A^n: a(n):= add(B(n)[m, k], k=1..9): od: seq(a(n), n=0..nmax); # Johannes W. Meijer, Aug 01 2010
  • Mathematica
    Table[(1/32)(2(-2)^(n+2)+(2+Sqrt[8])^(n+2)+(2-Sqrt[8])^(n+2)), {n, 0, 19}] // FullSimplify
    LinearRecurrence[{2,12,8}, {1,3,18}, 31] (* G. C. Greubel, Aug 18 2022 *)
  • PARI
    Vec((1+x)/((1+2*x)*(1-4*x-4*x^2))+O(x^30)) \\ Joerg Arndt, Jan 29 2024
  • SageMath
    [2^(n-3)*(lucas_number2(n+2,2,-1) +2*(-1)^n) for n in (0..30)] # G. C. Greubel, Aug 18 2022
    

Formula

a(n) = (1/32)*(2*(-2)^(n+2) + (2+sqrt(8))^(n+2) + (2-sqrt(8))^(n+2)).
From R. J. Mathar, Jul 22 2010: (Start)
a(n) = 2*a(n-1) + 12*a(n-2) + 8*a(n-3).
G.f.: (1+x) / ( (1+2*x)*(1-4*x-4*x^2) ).
a(n) = (2*A057087(n-1) + 3*A057087(n) + (-2)^n)/4. (End)
Limit_{k->oo} a(n+k)/a(k) = A084128(n) + 2*A057087(n-1)*sqrt(2). - Johannes W. Meijer, Aug 01 2010
a(n) = A110048(n) + A110048(n-1). - R. J. Mathar, Mar 08 2021
a(n) = 2^(n-3)*(A002203(n+2) + 2*(-1)^n). - G. C. Greubel, Aug 18 2022

Extensions

Offset changed and edited by Johannes W. Meijer, Jul 15 2010

A094025 Expansion of (1+3x)/((1-x^2)(1-3x^2)).

Original entry on oeis.org

1, 3, 4, 12, 13, 39, 40, 120, 121, 363, 364, 1092, 1093, 3279, 3280, 9840, 9841, 29523, 29524, 88572, 88573, 265719, 265720, 797160, 797161, 2391483, 2391484, 7174452, 7174453, 21523359, 21523360, 64570080, 64570081, 193710243, 193710244
Offset: 0

Views

Author

Paul Barry, Apr 22 2004

Keywords

Comments

Add 1, triple, add 1, triple, ... (of course this is simply a restatement of one of Philippe Deléham's formulas). - Jon Perry, Aug 11 2014

Crossrefs

Formula

a(n)=4a(n-2)-3a(n-4); a(n)=3*3^(n/2)(1/4+sqrt(3)/4+(1/4-sqrt(3)/4)(-1)^n)+(-1)^n/2-1.
a(n) = a(n-1)*3 if n odd; a(n) = a(n-1)+1 if n even. - Philippe Deléham, Apr 22 2013
a(2n) = A003462(n+1); a(2n+1) = A123109(n+1) = A029858(n+1). - Philippe Deléham, Apr 22 2013
Showing 1-3 of 3 results.