A173937 Smallest natural d = d(n) such that 2^n + d is lesser of twin primes (n = 0, 1, 2, ...).
2, 1, 1, 3, 1, 9, 7, 9, 13, 9, 7, 33, 31, 27, 67, 33, 1, 39, 7, 63, 313, 105, 277, 9, 73, 69, 457, 51, 121, 105, 7, 219, 91, 297, 247, 321, 115, 567, 1327, 411, 553, 987, 325, 183, 2065, 2565, 415, 879, 241, 459, 643, 1209, 391, 1155, 1477, 1449, 175, 129, 1045
Offset: 0
Keywords
Examples
2^0 + 2 = 3 = prime(2), 2^0 + 4 = 5 = prime(3). 2^1 + 1 = 3 = prime(2), 2^1 + 3 = 5 = prime(3). 2^2 + 1 = 5 = prime(3), 2^2 + 3 = 7 = prime(4).
References
- Richard K. Guy, Unsolved Problems in Number Theory, New York, Springer-Verlag, 1994
- Friedhelm Padberg, Elementare Zahlentheorie, Spektrum Akademischer Verlag, Berlin Heidelberg, 1996
- Daniel Shanks, Solved and Unsolved Problems in Number Theory, 4th ed., New York, Chelsea, 1993
Links
- Robert G. Wilson v, Table of n, a(n) for n = 0..3000 (0..300 from T. D. Noe).
- Ken Takusagawa, Twin primes
Programs
Extensions
Values a(0..300) double-checked by M. F. Hasler, Oct 21 2012
Comments