A124080 10 times triangular numbers: a(n) = 5*n*(n + 1).
0, 10, 30, 60, 100, 150, 210, 280, 360, 450, 550, 660, 780, 910, 1050, 1200, 1360, 1530, 1710, 1900, 2100, 2310, 2530, 2760, 3000, 3250, 3510, 3780, 4060, 4350, 4650, 4960, 5280, 5610, 5950, 6300, 6660, 7030, 7410, 7800, 8200, 8610, 9030, 9460, 9900, 10350
Offset: 0
Links
- Ivan Panchenko, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Programs
-
Magma
[ 5*n*(n+1) : n in [0..50] ]; // Wesley Ivan Hurt, Jun 09 2014
-
Maple
[seq(10*binomial(n,2),n=1..51)]; seq(n*(n+1)*5, n=0..39); # Zerinvary Lajos, Mar 06 2007
-
Mathematica
10*Accumulate[Range[0,50]] (* or *) LinearRecurrence[{3,-3,1},{0,10,30},50] (* Harvey P. Dale, Jul 21 2011 *)
-
PARI
a(n)=5*n*(n+1) \\ Charles R Greathouse IV, Sep 28 2015
Formula
a(n) = 10*C(n,2), n >= 1.
a(n) = 5*n*(n + 1), n >= 0. - Zerinvary Lajos, Mar 06 2007
a(n) = 10*n + a(n-1) (with a(0) = 0). - Vincenzo Librandi, Nov 12 2009
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3), a(0) = 0, a(1) = 10, a(2) = 30. - Harvey P. Dale, Jul 21 2011
a(n) = A062786(n+1) - 1. - Omar E. Pol, Oct 03 2011
a(n) = A131242(10*n+9). - Philippe Deléham, Mar 27 2013
From G. C. Greubel, Aug 22 2017: (Start)
G.f.: 10*x/(1 - x)^3.
E.g.f.: 5*x*(x + 2)*exp(x). (End)
From Amiram Eldar, Sep 04 2022: (Start)
Sum_{n>=1} 1/a(n) = 1/5.
Sum_{n>=1} (-1)^(n+1)/a(n) = (2*log(2)-1)/5. (End)
From Amiram Eldar, Feb 21 2023: (Start)
Product_{n>=1} (1 - 1/a(n)) = -(5/Pi)*cos(3*Pi/(2*sqrt(5))).
Product_{n>=1} (1 + 1/a(n)) = (5/Pi)*cos(Pi/(2*sqrt(5))). (End)
Comments