cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A123998 Numbers k such that 2k+1 and 4k+1 are primes.

Original entry on oeis.org

1, 3, 9, 15, 18, 39, 48, 69, 78, 99, 105, 114, 135, 153, 165, 168, 183, 189, 219, 249, 273, 288, 300, 303, 309, 330, 345, 363, 405, 414, 438, 468, 483, 498, 504, 534, 585, 618, 639, 648, 699, 714, 729, 765, 804, 813, 828, 879, 933, 1005, 1014, 1044, 1065, 1068
Offset: 1

Views

Author

Artur Jasinski, Oct 31 2006

Keywords

Comments

Note that if n == 1 (mod 3) then 2n+1 is not prime (except n=1); and if n == 2 (mod 3) then 4n+1 is not prime. Therefore n must be a multiple of 3, except for n=1. - Max Alekseyev, Nov 02 2006

Crossrefs

Programs

  • Magma
    [n: n in [0..1100] |IsPrime(2*n+1) and IsPrime(4*n+1)]; // Vincenzo Librandi, Apr 17 2013
    
  • Mathematica
    Select[Range[1100], And @@ PrimeQ /@ ({2, 4}*# + 1) &] (* Ray Chandler, Nov 20 2006 *)
  • PARI
    is(k) = isprime(2*k+1) && isprime(4*k+1); \\ Jinyuan Wang, Aug 04 2019

Extensions

Extended by Ray Chandler, Nov 20 2006

A124408 Numbers k such that 2k+1, 4k+1 and 6k+1 are primes.

Original entry on oeis.org

1, 3, 18, 105, 135, 153, 165, 168, 300, 363, 585, 618, 648, 765, 828, 1110, 1140, 1278, 1518, 1530, 1533, 2130, 2223, 2400, 2475, 2613, 2790, 2925, 3075, 3180, 3345, 3420, 3483, 3810, 3840, 3843, 3933, 4008, 4083, 4095, 4143, 4260, 4263, 4323, 4470, 4545
Offset: 1

Views

Author

Artur Jasinski, Oct 31 2006

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[4600], And @@ PrimeQ /@ ({2, 4, 6}*# + 1) &] (* Ray Chandler, Nov 20 2006 *)
  • PARI
    is(k) = sum(j = 1, 3, isprime(2*j*k+1)) == 3; \\ Jinyuan Wang, Aug 04 2019

A124410 Numbers k such that 2k+1, 4k+1, 6k+1, 8k+1 and 10k+1 are primes.

Original entry on oeis.org

5415, 12705, 13020, 44370, 82950, 98280, 105525, 112200, 115140, 123855, 134250, 134460, 187740, 188745, 210165, 225705, 247170, 256410, 296310, 302085, 367875, 375645, 382890, 399585, 404040, 476340, 487830, 526845, 532095, 566430, 578085
Offset: 1

Views

Author

Artur Jasinski, Oct 31 2006

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[600000], And @@ PrimeQ /@ ({2, 4, 6, 8, 10}*# + 1) &] (* Ray Chandler, Nov 20 2006 *)
  • PARI
    is(k) = sum(j = 1, 5, isprime(2*j*k+1)) == 5; \\ Jinyuan Wang, Aug 04 2019

A124411 Numbers k such that 2k+1, 4k+1, 6k+1, 8k+1, 10k+1 and 12k+1 are primes.

Original entry on oeis.org

12705, 13020, 105525, 256410, 966840, 1707510, 1944495, 2310000, 2478630, 3132675, 3836070, 3976770, 4112430, 4532325, 5499585, 5920005, 6610485, 7390845, 8552250, 10739505, 11120340, 12231450, 12338130, 13243230, 16467255
Offset: 1

Views

Author

Artur Jasinski, Oct 31 2006

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[10^7], And @@ PrimeQ /@ ({2, 4, 6, 8, 10, 12}*# + 1) &] (* Ray Chandler, Nov 20 2006 *)
  • PARI
    is(k) = sum(j = 1, 6, isprime(2*j*k+1)) == 6; \\ Jinyuan Wang, Aug 04 2019

Extensions

Extended by Ray Chandler, Nov 20 2006

A237189 Numbers k such that k+1, 2k+1, 3k+1, 4k+1 are all prime.

Original entry on oeis.org

330, 1530, 3060, 4260, 4950, 6840, 10830, 15390, 18120, 23010, 25410, 26040, 31770, 33300, 40110, 41490, 45060, 49830, 53880, 59340, 65850, 70140, 73770, 78540, 88740, 95460, 96930, 109470, 111720, 112620, 117720, 131310, 133200, 134730, 135300, 150150, 165900
Offset: 1

Views

Author

Alex Ratushnyak, Feb 04 2014

Keywords

Comments

A subsequence of A064238.
All terms are divisible by 30, and b(n)=a(n)/30 begins: 11, 51, 102, 142, 165, 228, 361, 513, 604, 767, 847, 868, 1059, 1110, 1337, 1383, 1502, 1661, 1796, 1978, 2195, ...

Crossrefs

Programs

  • Python
    import sympy
    from sympy import isprime
    for n in range(0,100000,2):
        if isprime(n+1) and isprime(2*n+1) and isprime(3*n+1) and isprime(4*n+1):
            print(str(n), end=',')

Formula

a(n) = 2*(A105653(n) + 1) = 2*A124409(n). - Hugo Pfoertner, May 03 2021
Showing 1-5 of 5 results.