cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A217133 Numbers n such that 5^n + 8 is prime.

Original entry on oeis.org

1, 95, 335, 3155, 28651, 91135
Offset: 1

Views

Author

Vincenzo Librandi, Oct 01 2012

Keywords

Comments

Naturally these numbers are odd since (6-1)^(2n)+8 is divisible by 3. - Bruno Berselli, Oct 04 2012
a(7) > 10^5. - Robert Price, Feb 03 2014
a(7) > 5*10^5. - Tyler NeSmith, Apr 24 2022

Crossrefs

Programs

  • Mathematica
    Select[Range[1, 15000, 2], PrimeQ[5^# + 8] &]
  • PARI
    for(n=1, 5*10^3, if(isprime(5^n+8), print1(n", ")))

Extensions

a(5)-a(6) from Robert Price, Feb 03 2014

A228028 Primes of the form 5^n + 4.

Original entry on oeis.org

5, 29, 15629, 9765629
Offset: 1

Views

Author

Vincenzo Librandi, Aug 11 2013

Keywords

Crossrefs

Cf. A124621 (associated n).
Cf. Primes of the form k^n + h: A092506 (k=2, h=1), A057733 (k=2, h=3), A123250 (k=2, h=5), A104066 (k=2, h=7), A104070 (k=2, h=9), A057735 (k=3, h=2), A102903 (k=3, h=4), A102870 (k=3, h=8), A102907 (k=3, h=10), A290200 (k=4, h=1), A228027 (k=4, h=9), A182330 (k=5, h=2), this sequence (k=5, h=4), A228029 (k=5, h=6), A102910 (k=5, h=8), A182331 (k=6, h=1), A104118 (k=6, h=5), A104115 (k=6, h=7), A104065 (k=7, h=4), A228030 (k=7, h=6), A228031 (k=7, h=10), A228032 (k=8, h=3), A228033 (k=8, h=5), A144360 (k=8, h=7), A145440 (k=8, h=9), A228034 (k=9, h=2), A159352 (k=10, h=3), A159031 (k=10, h=7).

Programs

  • Magma
    [a: n in [0..200] | IsPrime(a) where a is  5^n+4];
  • Mathematica
    Select[Table[5^n + 4, {n, 0, 200}], PrimeQ]

Extensions

Corrected cross-references - Robert Price, Aug 01 2017

A243397 Numbers n such that 19^n+4 is prime.

Original entry on oeis.org

0, 1, 3, 21, 145, 273, 1425, 9613, 15711, 18445
Offset: 1

Views

Author

Felix Fröhlich, Jun 04 2014

Keywords

Comments

No further terms up to 20000. - Felix Fröhlich, Oct 29 2014
No further terms up to 24000. - Felix Fröhlich, Jan 22 2015
No further terms up to 50000. - Michael S. Branicky, Oct 09 2024

Crossrefs

Corresponding sequences for k^n+4: A058958 (k=3), A124621 (k=5), A096305 (k=7), A217384 (k=9), A137236 (k=13).

Programs

  • Magma
    [n: n in [0..1000] | IsPrime(19^n+4)]; // Vincenzo Librandi, Oct 16 2014
  • Mathematica
    Select[Range[0, 10000], PrimeQ[19^# + 4] &] (* Vincenzo Librandi, Oct 16 2014 *)
  • PARI
    for(n=0, 10^5, if(ispseudoprime(19^n+4), print1(n, ", ")))
    

Extensions

a(1)-a(2) prepended by N. J. A. Sloane, Jun 18 2014
a(9)-a(10) from Felix Fröhlich, Oct 16 2014

A247166 Numbers k such that 15^k+4 is prime.

Original entry on oeis.org

0, 1, 2, 7, 10, 39, 42, 201, 225, 551
Offset: 1

Views

Author

Felix Fröhlich, Dec 01 2014

Keywords

Comments

No further terms up to 10000.
No further terms up to 10^5. - Tyler NeSmith, Jan 21 2021

Crossrefs

Corresponding sequences for m^k+4: A058958 (m=3), A124621 (m=5), A096305 (m=7), A217384 (m=9), A137236 (m=13), A243397 (m=19).

Programs

  • Magma
    [n: n in [0..300] | IsPrime(15^n+4)]; // Vincenzo Librandi, Dec 01 2015
  • Mathematica
    a247166[n_Integer] := Select[Range[n], PrimeQ[15^# + 4] &]; a247166[10^4] (* Michael De Vlieger, Dec 03 2014 *)
  • PARI
    for(n=0, 1e5, if(ispseudoprime(15^n+4), print1(n, ", ")))
    

Extensions

Offset changed to 1 by Georg Fischer, Sep 26 2022

A217134 Numbers n such that 5^n - 8 is prime.

Original entry on oeis.org

2, 4, 10, 14, 88, 112, 140, 764, 3040, 11096, 24934, 25616, 54584, 93400
Offset: 1

Views

Author

Vincenzo Librandi, Oct 01 2012

Keywords

Comments

a(15) > 10^5. - Robert Price, Feb 03 2014

Crossrefs

Programs

  • Mathematica
    Select[Range[2, 5000], PrimeQ[5^# - 8] &]
  • PARI
    for(n=2, 5*10^3, if(isprime(5^n-8), print1(n", ")))

Extensions

a(10)-a(14) from Robert Price, Feb 03 2014

A305531 Smallest k >= 1 such that (n-1)*n^k + 1 is prime.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 2, 1, 3, 10, 3, 1, 2, 1, 1, 4, 1, 29, 14, 1, 1, 14, 2, 1, 2, 4, 1, 2, 4, 5, 12, 2, 1, 2, 2, 9, 16, 1, 2, 80, 1, 2, 4, 2, 3, 16, 2, 2, 2, 1, 15, 960, 15, 1, 4, 3, 1, 14, 1, 6, 20, 1, 3, 946, 6, 1, 18, 10, 1, 4, 1, 5, 42, 4, 1, 828, 1, 1, 2, 1, 12, 2, 6, 4, 30, 3, 3022, 2, 1, 1
Offset: 2

Views

Author

Eric Chen, Jun 04 2018

Keywords

Comments

a(prime(j)) + 1 = A087139(j).
a(123) > 10^5, a(342) > 10^5, see the Barnes link for the Sierpinski base-123 and base-342 problems.
a(251) > 73000, see A087139.

Crossrefs

For the numbers k such that these forms are prime:
a1(b): numbers k such that (b-1)*b^k-1 is prime
a2(b): numbers k such that (b-1)*b^k+1 is prime
a3(b): numbers k such that (b+1)*b^k-1 is prime
a4(b): numbers k such that (b+1)*b^k+1 is prime (no such k exists when b == 1 (mod 3))
a5(b): numbers k such that b^k-(b-1) is prime
a6(b): numbers k such that b^k+(b-1) is prime
a7(b): numbers k such that b^k-(b+1) is prime
a8(b): numbers k such that b^k+(b+1) is prime (no such k exists when b == 1 (mod 3)).
Using "-------" if there is currently no OEIS sequence and "xxxxxxx" if no such k exists (this occurs only for a4(b) and a8(b) for b == 1 (mod 3)):
.
b a1(b) a2(b) a3(b) a4(b) a5(b) a6(b) a7(b) a8(b)
--------------------------------------------------------------------
4 A272057 ------- ------- xxxxxxx A059266 A089437 A217348 xxxxxxx
7 A046866 A245241 ------- xxxxxxx A191469 A217130 A217131 xxxxxxx
11 A046867 A057462 ------- ------- ------- ------- ------- -------
12 A079907 A251259 ------- ------- ------- A137654 ------- -------
13 A297348 ------- ------- xxxxxxx ------- ------- ------- xxxxxxx
14 A273523 ------- ------- ------- ------- ------- ------- -------
15 ------- ------- ------- ------- ------- ------- ------- -------
16 ------- ------- ------- xxxxxxx ------- ------- ------- xxxxxxx
Cf. (smallest k such that these forms are prime) A122396 (a1(b)+1 for prime b), A087139 (a2(b)+1 for prime b), A113516 (a5(b)), A076845 (a6(b)), A178250 (a7(b)).

Programs

  • PARI
    a(n)=for(k=1,2^16,if(ispseudoprime((n-1)*n^k+1),return(k)))

A253380 Numbers k such that 17^k + 4 is prime.

Original entry on oeis.org

0, 2, 6, 18, 7238
Offset: 1

Views

Author

Felix Fröhlich, Dec 31 2014

Keywords

Comments

No further terms up to 10000.
No further terms up to 37200. - Michael S. Branicky, Mar 22 2023

Examples

			For k = 0: 17^0 + 4 = 5, which is prime, so 0 is a term of the sequence.
For k = 2: 17^2 + 4 = 293, which is prime, so 2 is a term of the sequence.
		

Crossrefs

Corresponding sequences for k^n+4: A058958 (k=3), A124621 (k=5), A096305(k=7), A217384 (k=9), A137236 (k=13), A247166 (k=15), A243397 (k=19).

Programs

  • Mathematica
    Select[Range@10^5, PrimeQ[17^# + 4] &] (* Michael De Vlieger, Jan 03 2015 *)
  • PARI
    for(n=0, 1e5, if(ispseudoprime(17^n+4), print1(n, ", ")))

A378815 Numbers k such that 5^k + 64 is prime.

Original entry on oeis.org

2, 58, 170, 1402, 1774, 10802, 86342
Offset: 1

Views

Author

Robert Price, Dec 08 2024

Keywords

Examples

			2 is a term because 5^2 + 64 = 89 is prime.
		

Crossrefs

Programs

  • Magma
    [k: k in [0..1000] |IsPrime (5^k+64)];
  • Mathematica
    Select[Range[0,5000],PrimeQ[5^#+64]&]

Extensions

a(6) from Michael S. Branicky, Dec 17 2024
a(7) from Michael S. Branicky, Dec 23 2024

A378832 Numbers k such that 5^k + 68 is prime.

Original entry on oeis.org

1, 3, 7, 133, 331, 453, 10365
Offset: 1

Views

Author

Robert Price, Dec 08 2024

Keywords

Comments

a(8) > 22000. - Matthew L. LaSelle, Feb 25 2025
a(8) > 100000. - Michael S. Branicky, Mar 28 2025

Examples

			3 is a term because 5^3 + 68 = 193 is prime.
		

Crossrefs

Programs

  • Magma
    [k: k in [0..1000] |IsPrime (5^k+68)];
  • Mathematica
    Select[Range[0,5000],PrimeQ[5^#+68]&]

Extensions

a(7) from Michael S. Branicky, Dec 17 2024

A378866 Numbers k such that 5^k + 72 is prime.

Original entry on oeis.org

0, 2, 3, 118, 498, 1023, 4262, 6094, 6382, 26334, 56062
Offset: 1

Views

Author

Robert Price, Dec 09 2024

Keywords

Examples

			3 is a term because 5^3 + 72 = 197 is prime.
		

Crossrefs

Programs

  • Magma
    [k: k in [0..1000] |IsPrime (5^k+72)];
  • Mathematica
    Select[Range[0,5000],PrimeQ[5^#+72]&]

Extensions

a(8)-a(11) from Michael S. Branicky, Dec 19 2024
Showing 1-10 of 11 results. Next