cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A094178 Numbers n such that 4n+1 is divisible only by primes of form 4m+1 (i.e., by the Pythagorean primes A002144).

Original entry on oeis.org

1, 3, 4, 6, 7, 9, 10, 13, 15, 16, 18, 21, 22, 24, 25, 27, 28, 31, 34, 36, 37, 39, 42, 43, 45, 46, 48, 49, 51, 55, 57, 58, 60, 64, 66, 67, 69, 70, 72, 73, 76, 78, 79, 81, 84, 87, 88, 91, 93, 94, 97, 99, 100, 102, 105, 106, 108, 111, 112, 114, 115, 120, 121, 123, 126, 127
Offset: 1

Views

Author

Lekraj Beedassy, May 06 2004

Keywords

Comments

For the actual numbers 4n+1, see A008846(n).
Complement of A124934; A125203(a(n)) = 0; A000290 and A000217 are subsequences. - Reinhard Zumkeller, Nov 24 2006

Programs

  • Haskell
    import Data.List (elemIndices)
    a094178 n = a094178_list !! (n-1)
    a094178_list = map (+ 1) $ elemIndices 0 a125203_list
    -- Reinhard Zumkeller, Jan 02 2013

Extensions

More terms from Ray Chandler, Jun 20 2004

A125199 Triangle read by rows: T(n,k) = 4*n*k - n - k, 1<=k<=n.

Original entry on oeis.org

2, 5, 12, 8, 19, 30, 11, 26, 41, 56, 14, 33, 52, 71, 90, 17, 40, 63, 86, 109, 132, 20, 47, 74, 101, 128, 155, 182, 23, 54, 85, 116, 147, 178, 209, 240, 26, 61, 96, 131, 166, 201, 236, 271, 306, 29, 68, 107, 146, 185, 224, 263, 302, 341, 380, 32, 75, 118, 161, 204, 247
Offset: 1

Views

Author

Reinhard Zumkeller, Nov 24 2006

Keywords

Comments

A124934 gives the range: for n,k with 1<=k<=n exists at least one m such that A124934(m)=T(n,k);
row sums give A125200; central terms give A125201;
T(n,1) = A016789(n-1);
T(n,2) = A017041(n-1) for n>1;
T(n,3) = A017485(n-1) for n>2;
T(n,n-1) = A125202(n) for n>1;
T(n,n) = A002939(n).

Programs

  • Mathematica
    Flatten[Table[4*n*k-n-k,{n,15},{k,n}]] (* Harvey P. Dale, Nov 15 2014 *)

A125203 Number of ways to write n as 4*x*y - x - y with 1<=x<=y.

Original entry on oeis.org

0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 2, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 2, 0, 0, 1, 0, 0, 2, 0, 0, 1, 0, 1, 1, 1, 0, 2, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 2, 0, 0, 2, 0, 0, 2, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 2, 0, 0, 2, 1, 0, 1, 0, 0, 1, 2, 0, 1, 0, 0, 2, 0, 1, 1, 0
Offset: 1

Views

Author

Reinhard Zumkeller, Nov 24 2006

Keywords

Comments

a(A094178(n))=0; a(A124934(n))>0; a(A125217(n))=1; a(A125218(n))>1.

Crossrefs

Programs

  • Haskell
    a125203 n = length [() | x <- [1 .. (n + 1) `div` 3],
                             let (y,m) = divMod (x + n) (4 * x - 1),
                             x <= y, m == 0]
    -- Reinhard Zumkeller, Jan 02 2013
  • Mathematica
    a[n_] := Solve[1<=x<=y && n == 4 x y - x - y, {x, y}, Integers] // Length;
    Table[a[n], {n, 1, 105}] (* Jean-François Alcover, Oct 12 2021 *)

A125217 Numbers that can be written uniquely as 4*x*y-x-y with 1<=x<=y.

Original entry on oeis.org

2, 5, 8, 11, 12, 14, 17, 19, 20, 23, 29, 30, 32, 33, 35, 38, 40, 44, 50, 52, 53, 54, 59, 61, 62, 63, 65, 75, 77, 80, 82, 83, 85, 90, 92, 95, 98, 103, 104, 109, 113, 117, 118, 119, 122, 124, 125, 129, 132, 134, 137, 138, 143, 145, 147, 149, 151, 158, 159, 162, 164, 167
Offset: 1

Views

Author

Reinhard Zumkeller, Nov 24 2006

Keywords

Comments

A125203(a(n)) = 1.
A124934 is the union of this sequence and A125218.

Programs

  • Haskell
    import Data.List (elemIndices)
    a125217 n = a125217_list !! (n-1)
    a125217_list = map (+ 1) $ elemIndices 1 a125203_list
    -- Reinhard Zumkeller, Jan 02 2013

A125218 Numbers having at least two representations as 4*x*y-x-y with 1<=x<=y.

Original entry on oeis.org

26, 41, 47, 56, 68, 71, 74, 86, 89, 96, 101, 107, 110, 116, 128, 131, 140, 146, 152, 155, 161, 166, 173, 176, 182, 185, 191, 194, 201, 206, 209, 215, 221, 224, 236, 239, 242, 250
Offset: 1

Views

Author

Reinhard Zumkeller, Nov 24 2006

Keywords

Comments

A125203(a(n)) > 1.
A124934 is the union of this sequence and A125217.

Programs

  • Haskell
    import Data.List (findIndices)
    a125218 n = a125218_list !! (n-1)
    a125218_list = map (+ 1) $ findIndices (> 1) a125203_list
    -- Reinhard Zumkeller, Jan 02 2013

A380644 Numbers that can be expressed as 4*j*k+j+k, j,k >= 1, as well as 4*j*k-j-k, j,k >= 2.

Original entry on oeis.org

26, 41, 47, 56, 61, 68, 71, 74, 86, 89, 96, 101, 107, 110, 116, 128, 131, 140, 146, 151, 152, 155, 159, 161, 166, 173, 176, 182, 185, 191, 194, 201, 206, 208, 209, 215, 221, 224, 236, 239, 242, 250, 251, 257, 261, 263, 266, 271, 272, 278, 281, 290, 293, 296, 299
Offset: 1

Views

Author

Hugo Pfoertner, Jan 29 2025

Keywords

Examples

			a(1) = 26, because 26 = 4*1*5 + 1 + 5 = 4*2*4 - 2 - 4.
a(2) = 41: 41 = 4*1*8 + 1 + 8 = 4*3*4 - 3 - 4.
		

Crossrefs

Showing 1-6 of 6 results.