cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A016789 a(n) = 3*n + 2.

Original entry on oeis.org

2, 5, 8, 11, 14, 17, 20, 23, 26, 29, 32, 35, 38, 41, 44, 47, 50, 53, 56, 59, 62, 65, 68, 71, 74, 77, 80, 83, 86, 89, 92, 95, 98, 101, 104, 107, 110, 113, 116, 119, 122, 125, 128, 131, 134, 137, 140, 143, 146, 149, 152, 155, 158, 161, 164, 167, 170, 173, 176, 179
Offset: 0

Views

Author

Keywords

Comments

Except for 1, n such that Sum_{k=1..n} (k mod 3)*binomial(n,k) is a power of 2. - Benoit Cloitre, Oct 17 2002
The sequence 0,0,2,0,0,5,0,0,8,... has a(n) = n*(1 + cos(2*Pi*n/3 + Pi/3) - sqrt(3)*sin(2*Pi*n + Pi/3))/3 and o.g.f. x^2(2+x^3)/(1-x^3)^2. - Paul Barry, Jan 28 2004 [Artur Jasinski, Dec 11 2007, remarks that this should read (3*n + 2)*(1 + cos(2*Pi*(3*n + 2)/3 + Pi/3) - sqrt(3)*sin(2*Pi*(3*n + 2)/3 + Pi/3))/3.]
Except for 2, exponents e such that x^e + x + 1 is reducible. - N. J. A. Sloane, Jul 19 2005
The trajectory of these numbers under iteration of sum of cubes of digits eventually turns out to be 371 or 407 (47 is the first of the second kind). - Avik Roy (avik_3.1416(AT)yahoo.co.in), Jan 19 2009
Union of A165334 and A165335. - Reinhard Zumkeller, Sep 17 2009
a(n) is the set of numbers congruent to {2,5,8} mod 9. - Gary Detlefs, Mar 07 2010
It appears that a(n) is the set of all values of y such that y^3 = k*n + 2 for integer k. - Gary Detlefs, Mar 08 2010
These numbers do not occur in A000217 (triangular numbers). - Arkadiusz Wesolowski, Jan 08 2012
A089911(2*a(n)) = 9. - Reinhard Zumkeller, Jul 05 2013
Also indices of even Bell numbers (A000110). - Enrique Pérez Herrero, Sep 10 2013
Central terms of the triangle A108872. - Reinhard Zumkeller, Oct 01 2014
A092942(a(n)) = 1 for n > 0. - Reinhard Zumkeller, Dec 13 2014
a(n-1), n >= 1, is also the complex dimension of the manifold E(S), the set of all second-order irreducible Fuchsian differential equations defined on P^1 = C U {oo}, having singular points at most in S = {a_1, ..., a_n, a_{n+1} = oo}, a subset of P^1. See the Iwasaki et al. reference, Proposition 2.1.3., p. 149. - Wolfdieter Lang, Apr 22 2016
Except for 2, exponents for which 1 + x^(n-1) + x^n is reducible. - Ron Knott, Sep 16 2016
The reciprocal sum of 8 distinct items from this sequence can be made equal to 1, with these terms: 2, 5, 8, 14, 20, 35, 41, 1640. - Jinyuan Wang, Nov 16 2018
There are no positive integers x, y, z such that 1/a(x) = 1/a(y) + 1/a(z). - Jinyuan Wang, Dec 31 2018
As a set of positive integers, it is the set sum S + S where S is the set of numbers in A016777. - Michael Somos, May 27 2019
Interleaving of A016933 and A016969. - Leo Tavares, Nov 16 2021
Prepended with {1}, these are the denominators of the elements of the 3x+1 semigroup, the numerators being A005408 prepended with {2}. See Applegate and Lagarias link for more information. - Paolo Xausa, Nov 20 2021
This is also the maximum number of moves starting with n + 1 dots in the game of Sprouts. - Douglas Boffey, Aug 01 2022 [See the Wikipedia link. - Wolfdieter Lang, Sep 29 2022]
a(n-2) is the maximum sum of the span (or L(2,1)-labeling number) of a graph of order n and its complement. The extremal graphs are stars and their complements. For example, K_{1,2} has span 3, and K_2 has span 2. Thus a(3-1) = 5. - Allan Bickle, Apr 20 2023

Examples

			G.f. = 2 + 5*x + 8*x^2 + 11*x^3 + 14*x^4 + 17*x^5 + 20*x^6 + ... - _Michael Somos_, May 27 2019
		

References

  • K. Iwasaki, H. Kimura, S. Shimomura and M. Yoshida, From Gauss to Painlevé, Vieweg, 1991. p. 149.
  • Konrad Knopp, Theory and Application of Infinite Series, Dover, p. 269

Crossrefs

First differences of A005449.
Cf. A087370.
Cf. similar sequences with closed form (2*k-1)*n+k listed in A269044.

Programs

Formula

G.f.: (2+x)/(1-x)^2.
a(n) = 3 + a(n-1).
a(n) = 1 + A016777(n).
a(n) = A124388(n)/9.
a(n) = A125199(n+1,1). - Reinhard Zumkeller, Nov 24 2006
Sum_{n>=1} (-1)^n/a(n) = (1/3)*(Pi/sqrt(3) - log(2)). - Benoit Cloitre, Apr 05 2002
1/2 - 1/5 + 1/8 - 1/11 + ... = (1/3)*(Pi/sqrt(3) - log 2). [Jolley] - Gary W. Adamson, Dec 16 2006
Sum_{n>=0} 1/(a(2*n)*a(2*n+1)) = (Pi/sqrt(3) - log 2)/9 = 0.12451569... (see A196548). [Jolley p. 48 eq (263)]
a(n) = 2*a(n-1) - a(n-2); a(0)=2, a(1)=5. - Philippe Deléham, Nov 03 2008
a(n) = 6*n - a(n-1) + 1 with a(0)=2. - Vincenzo Librandi, Aug 25 2010
Conjecture: a(n) = n XOR A005351(n+1) XOR A005352(n+1). - Gilian Breysens, Jul 21 2017
E.g.f.: (2 + 3*x)*exp(x). - G. C. Greubel, Nov 02 2018
a(n) = A005449(n+1) - A005449(n). - Jinyuan Wang, Feb 03 2019
a(n) = -A016777(-1-n) for all n in Z. - Michael Somos, May 27 2019
a(n) = A007310(n+1) + (1 - n mod 2). - Walt Rorie-Baety, Sep 13 2021
a(n) = A000096(n+1) - A000217(n-1). See Capped Triangular Frames illustration. - Leo Tavares, Oct 05 2021

A002939 a(n) = 2*n*(2*n-1).

Original entry on oeis.org

0, 2, 12, 30, 56, 90, 132, 182, 240, 306, 380, 462, 552, 650, 756, 870, 992, 1122, 1260, 1406, 1560, 1722, 1892, 2070, 2256, 2450, 2652, 2862, 3080, 3306, 3540, 3782, 4032, 4290, 4556, 4830, 5112, 5402, 5700, 6006, 6320, 6642, 6972, 7310, 7656, 8010, 8372
Offset: 0

Views

Author

Keywords

Comments

Write 0,1,2,... in a spiral; sequence gives numbers on one of 4 diagonals (see Example section).
For n>1 this is the Engel expansion of cosh(1), A118239. - Benoit Cloitre, Mar 03 2002
a(n) = A125199(n,n) for n>0. - Reinhard Zumkeller, Nov 24 2006
Central terms of the triangle in A195437: a(n+1) = A195437(2*n,n). - Reinhard Zumkeller, Nov 23 2011
For n>2, the terms represent the sums of those primitive Pythagorean triples with hypotenuse (H) one unit longer than the longest side (L), or H = L + 1. - Richard R. Forberg, Jun 09 2015
For n>1, a(n) is the perimeter of a Pythagorean triangle with an odd leg 2*n-1. - Agola Kisira Odero, Apr 26 2016
From Rigoberto Florez, Nov 07 2020 : (Start)
A338109(n)/a(n+1) is the Kirchhoff index of the join of the disjoint union of two complete graphs on n vertices with the empty graph on n+1 vertices.
Equivalently, the graph can be described as the graph on 3*n + 1 vertices with labels 0..3*n and with i and j adjacent iff iff i+j> 0 mod 3.
A338588(n)/a(n+1) is the Kirchhoff index of the disjoint union of two complete graphs each on n and n+1 vertices with the empty graph on n+1 vertices.
Equivalently, the graph can be described as the graph on 3*n + 2 vertices with labels 0..3*n+1 and with i and j adjacent iff i+j> 0 mod 3.
These graphs are cographs. (End)
a(n), n>=1, is the number of paths of minimum length (length=2) from the origin to the cross polytope of size 2 in Z^n (column 2 in A371064). - Shel Kaphan, Mar 09 2024

Examples

			G.f. = 2*x + 12*x^2 + 30*x^3 + 56*x^4 + 90*x^5 + 132*x^6 + 182*x^7 + 240*x^8 + ...
On a square lattice, place the nonnegative integers at lattice points forming a spiral as follows: place "0" at the origin; then move one step in any of the four cardinal directions and place "1" at the lattice point reached; then turn 90 degrees in either direction and place a "2" at the next lattice point; then make another 90-degree turn in the same direction and place a "3" at the lattice point; etc. The terms of the sequence will lie along one of the diagonals, as seen in the example below:
.
   99  64--65--66--67--68--69--70--71--72
    |   |                               |
   98  63  36--37--38--39--40--41--42  73
    |   |   |                       |   |
   97  62  35  16--17--18--19--20  43  74
    |   |   |   |               |   |   |
   96  61  34  15   4---5---6  21  44  75
    |   |   |   |   |       |   |   |   |
   95  60  33  14   3  *0*  7  22  45  76
    |   |   |   |   |   |   |   |   |   |
   94  59  32  13  *2*--1   8  23  46  77
    |   |   |   |           |   |   |   |
   93  58  31 *12*-11--10---9  24  47  78
    |   |   |                   |   |   |
   92  57 *30*-29--28--27--26--25  48  79
    |   |                           |   |
   91 *56*-55--54--53--52--51--50--49  80
    |                                   |
  *90*-89--88--87--86--85--84--83--82--81
.
[Edited by _Jon E. Schoenfield_, Jan 01 2017]
		

References

  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 2nd ed., 1994, p. 99.

Crossrefs

Sequences on the four axes of the square spiral: Starting at 0: A001107, A033991, A007742, A033954; starting at 1: A054552, A054556, A054567, A033951.
Sequences on the four diagonals of the square spiral: Starting at 0: A002939 = 2*A000384, A016742 = 4*A000290, A002943 = 2*A014105, A033996 = 8*A000217; starting at 1: A054554, A053755, A054569, A016754.
Sequences obtained by reading alternate terms on the X and Y axes and the two main diagonals of the square spiral: Starting at 0: A035608, A156859, A002378 = 2*A000217, A137932 = 4*A002620; starting at 1: A317186, A267682, A002061, A080335.
Cf. numbers of the form n*(n*k-k+4)/2 listed in A226488 (this sequence is the case k=8). - Bruno Berselli, Jun 10 2013
Cf. A017089 (first differences), A268684 (partial sums), A010050 (partial products).
Cf. A371064.

Programs

Formula

Sum_{n >= 1} 1/a(n) = log(2) (cf. Tijdeman).
Log(2) = Sum_{n >= 1} ((1 - 1/2) + (1/3 - 1/4) + (1/5 - 1/6) + (1/7 - 1/8) + ...) = Sum_{n >= 0} (-1)^n/(n+1). Log(2) = Integral_{x=0..1} 1/(1+x) dx. - Gary W. Adamson, Jun 22 2003
a(n) = A000384(n)*2. - Omar E. Pol, May 14 2008
From R. J. Mathar, Apr 23 2009: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
G.f.: 2*x*(1+3*x)/(1-x)^3. (End)
a(n) = a(n-1) + 8*n - 6 (with a(0)=0). - Vincenzo Librandi, Nov 12 2010
a(n) = A118729(8n+1). - Philippe Deléham, Mar 26 2013
Product_{k=1..n} a(k) = (2n)! = A010050(n). - Tony Foster III, Sep 06 2015
E.g.f.: 2*x*(1 + 2*x)*exp(x). - Ilya Gutkovskiy, Apr 29 2016
a(n) = A002943(-n) for all n in Z. - Michael Somos, Jan 28 2017
0 = 12 + a(n)*(-8 + a(n) - 2*a(n+1)) + a(n+1)*(-8 + a(n+1)) for all n in Z. - Michael Somos, Jan 28 2017
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/4 - log(2)/2. - Amiram Eldar, Jul 31 2020

A017041 a(n) = 7*n + 5.

Original entry on oeis.org

5, 12, 19, 26, 33, 40, 47, 54, 61, 68, 75, 82, 89, 96, 103, 110, 117, 124, 131, 138, 145, 152, 159, 166, 173, 180, 187, 194, 201, 208, 215, 222, 229, 236, 243, 250, 257, 264, 271, 278, 285, 292, 299, 306, 313, 320, 327, 334, 341, 348, 355, 362, 369, 376, 383
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

Formula

a(n) = 7*n + 5, n >= 0 (see the name).
a(n) = A125199(n+1,2) for n>0. - Reinhard Zumkeller, Nov 24 2006
G.f.: (5+2*x)/(1-x)^2 = 7*x/(1-x)^2 + 5/(1-x). - Wolfdieter Lang, Apr 10 2015
a(n) = A000326(n+2) - 3*A000217(n-1). - Leo Tavares, Sep 13 2022
E.g.f.: exp(x)*(5 + 7*x). - Stefano Spezia, Oct 10 2022

A017485 a(n) = 11*n + 8.

Original entry on oeis.org

8, 19, 30, 41, 52, 63, 74, 85, 96, 107, 118, 129, 140, 151, 162, 173, 184, 195, 206, 217, 228, 239, 250, 261, 272, 283, 294, 305, 316, 327, 338, 349, 360, 371, 382, 393, 404, 415, 426, 437, 448, 459, 470, 481, 492, 503, 514, 525, 536, 547, 558, 569, 580, 591, 602, 613
Offset: 0

Views

Author

N. J. A. Sloane, Dec 11 1996

Keywords

Comments

a(n) = A125199(n+1,3) for n>1. - Reinhard Zumkeller, Nov 24 2006

Crossrefs

Powers of the form (11*n+8)^m: this sequence (m=1), A017486 (m=2), A017487 (m=3), A017488 (m=4), A017489 (m=5), A017490 (m=6), A017491 (m=7), A017492 (m=8), A017493 (m=9), A017494 (m=10), A017495 (m=11), A017496 (m=12).

Programs

Formula

a(n) = 22*n + 5 - a(n-1), with n>0, a(0)=8. - Vincenzo Librandi, Dec 24 2010
From Colin Barker, Oct 05 2014: (Start)
a(n) = 2*a(n-1) - a(n-2).
G.f.: (8 + 3*x)/(1-x)^2. (End)
E.g.f.: (8 + 11*x)*exp(x). - G. C. Greubel, Sep 21 2019

A125202 a(n) = 4*n^2 - 6*n + 1.

Original entry on oeis.org

-1, 5, 19, 41, 71, 109, 155, 209, 271, 341, 419, 505, 599, 701, 811, 929, 1055, 1189, 1331, 1481, 1639, 1805, 1979, 2161, 2351, 2549, 2755, 2969, 3191, 3421, 3659, 3905, 4159, 4421, 4691, 4969, 5255, 5549, 5851, 6161, 6479, 6805, 7139, 7481, 7831, 8189, 8555, 8929, 9311, 9701, 10099, 10505, 10919, 11341
Offset: 1

Views

Author

Reinhard Zumkeller, Nov 24 2006

Keywords

Crossrefs

Programs

Formula

a(n) = A125199(n,n-1) for n>1.
A003415(a(n)) = A017089(n-1).
From Arkadiusz Wesolowski, Dec 25 2011: (Start)
a(1) = -1, a(n) = a(n-1) + 8*n - 10.
a(n) = 2*a(n-1) - a(n-2) + 8 with a(1) = -1 and a(2) = 5.
G.f.: (1 - 4*x + 11*x^2)/(1 - x)^3. (End)
a(n) = A002943(n-1) - 1. - Arkadiusz Wesolowski, Feb 15 2012
a(n) = A028387(2n-3), with A028387(-1) = -1. - Vincenzo Librandi, Oct 10 2013
E.g.f.: exp(x)*(1 - 2*x + 4*x^2). - Stefano Spezia, Oct 10 2022
Sum_{n>=1} 1/a(n) = sqrt(5)/10*(psi(1/4+sqrt(5)/4) - psi(1/4-sqrt(5)/4)) = -0.656213833... - R. J. Mathar, Apr 22 2024

A124934 Numbers of the form 4mn - m - n, where m, n are positive integers.

Original entry on oeis.org

2, 5, 8, 11, 12, 14, 17, 19, 20, 23, 26, 29, 30, 32, 33, 35, 38, 40, 41, 44, 47, 50, 52, 53, 54, 56, 59, 61, 62, 63, 65, 68, 71, 74, 75, 77, 80, 82, 83, 85, 86, 89, 90, 92, 95, 96, 98, 101, 103, 104, 107, 109, 110, 113, 116, 117, 118, 119, 122, 124, 125, 128, 129, 131
Offset: 1

Views

Author

Nick Hobson, Nov 13 2006

Keywords

Comments

a(n) misses the squares since (2x)^2 + 1 = (4m - 1)(4n - 1) is impossible.
a(n) misses the triangular numbers since (2x + 1)^2 + 1 = 2(4m - 1)(4n - 1) is impossible.
Taking m = k(k - 1)/2, n = k(k + 1)/2 gives 4mn - m - n = (k^2 - 1)^2 - 1, so a(n) is one less than a square infinitely often.
Complement of A094178; A125203(a(n)) > 0; union of A125217 and A125218; range of A125199. - Reinhard Zumkeller, Nov 24 2006

Examples

			a(1) = 2 because 2 = 4*1*1 - 1 - 1 is the smallest value in the sequence.
		

References

  • L. E. Dickson, History of the Theory of Numbers, Vol. II, Diophantine Analysis. Dover Publications, Inc., Mineola, NY, 2005, p. 401.

Crossrefs

Programs

  • Haskell
    import Data.List (findIndices)
    a124934 n = a124934_list !! (n-1)
    a124934_list = map (+ 1) $ findIndices (> 0) a125203_list
    -- Reinhard Zumkeller, Jan 02 2013

Extensions

More terms from Reinhard Zumkeller, Nov 24 2006

A125200 a(n) = n*(4*n^2 + n - 1)/2.

Original entry on oeis.org

2, 17, 57, 134, 260, 447, 707, 1052, 1494, 2045, 2717, 3522, 4472, 5579, 6855, 8312, 9962, 11817, 13889, 16190, 18732, 21527, 24587, 27924, 31550, 35477, 39717, 44282, 49184, 54435, 60047, 66032, 72402, 79169, 86345, 93942, 101972, 110447, 119379
Offset: 1

Views

Author

Reinhard Zumkeller, Nov 24 2006

Keywords

Comments

a(n) = Sum_{k=1..n} (4*n*k - n - k), sums of rows of the triangle in A125199.
A003415(A003415(a(n))) = 2*A016969(n-1).

Crossrefs

Programs

  • Magma
    [n*(4*n^2 +n-1)div 2:n in [1..40]]; // Vincenzo Librandi, Dec 27 2010
  • Mathematica
    LinearRecurrence[{4,-6,4,-1},{2,17,57,134},40] (* Harvey P. Dale, Feb 05 2013 *)

Formula

a(n) = 4*a(n-1) -6*a(n-2) +4*a(n-3) -a(n-4). - R. J. Mathar, Feb 12 2010
G.f.: x*(2+9*x+x^2)/(x-1)^4. - R. J. Mathar, Feb 12 2010
a(n) = Sum_{i=1..n} A033568(i). - Bruno Berselli, Jul 22 2013

Extensions

Definition corrected by Vincenzo Librandi, Dec 27 2010

A125201 a(n) = 8*n^2 - 7*n + 1.

Original entry on oeis.org

1, 2, 19, 52, 101, 166, 247, 344, 457, 586, 731, 892, 1069, 1262, 1471, 1696, 1937, 2194, 2467, 2756, 3061, 3382, 3719, 4072, 4441, 4826, 5227, 5644, 6077, 6526, 6991, 7472, 7969, 8482, 9011, 9556, 10117, 10694, 11287, 11896, 12521, 13162, 13819, 14492, 15181, 15886
Offset: 0

Views

Author

Reinhard Zumkeller, Nov 24 2006

Keywords

Comments

Central terms of the triangle in A125199.
Sequence found by reading the line from 2, in the direction 2, 19, ..., in the square spiral whose vertices are the triangular numbers A000217. - Omar E. Pol, Sep 05 2011
Maximum number of regions that can be obtained in the plane by drawing n copies of a "strict long-legged M" letter. - N. J. A. Sloane, Aug 01 2025

Crossrefs

Programs

Formula

a(n) = 1 + A051870(n). - Omar E. Pol, Sep 05 2011
From Arkadiusz Wesolowski, Dec 25 2011: (Start)
a(1) = 2, a(n) = a(n-1) + 16*n - 15.
a(n) = 2*a(n-1) - a(n-2) + 16 with a(1) = 2 and a(2) = 19.
G.f.: (1 - x + 16*x^2)/(1 - x)^3. (End)
Sum_{n>=1} 1/a(n) = (psi(9/16+sqrt(17)/16) - psi(9/16-sqrt(17)/16))/sqrt(17) = 0.61242052... - R. J. Mathar, Apr 22 2024
From Elmo R. Oliveira, Oct 31 2024: (Start)
E.g.f.: exp(x)*(8*x^2 + x + 1) - 1.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 3. (End)

Extensions

a(0) = 1 added by N. J. A. Sloane, Aug 01 2025 (this will require several additional changes).
Showing 1-8 of 8 results.