A125128 a(n) = 2^(n+1) - n - 2, or partial sums of main diagonal of array A125127 of k-step Lucas numbers.
1, 4, 11, 26, 57, 120, 247, 502, 1013, 2036, 4083, 8178, 16369, 32752, 65519, 131054, 262125, 524268, 1048555, 2097130, 4194281, 8388584, 16777191, 33554406, 67108837, 134217700, 268435427, 536870882, 1073741793, 2147483616, 4294967263, 8589934558
Offset: 1
Examples
a(1) = 1 because "1-step Lucas number"(1) = 1. a(2) = 4 = a(1) + [2-step] Lucas number(2) = 1 + 3. a(3) = 11 = a(2) + 3-step Lucas number(3) = 1 + 3 + 7. a(4) = 26 = a(3) + 4-step Lucas number(4) = 1 + 3 + 7 + 15. a(5) = 57 = a(4) + 5-step Lucas number(5) = 1 + 3 + 7 + 15 + 31. a(6) = 120 = a(5) + 6-step Lucas number(6) = 1 + 3 + 7 + 15 + 31 + 63. G.f. = x + 4*x^2 + 11*x^3 + 26*x^4 + 57*x^5 + 120*x^6 + 247*x^7 + 502*x^8 + ...
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Dillan Agrawal, Selena Ge, Jate Greene, Tanya Khovanova, Dohun Kim, Rajarshi Mandal, Tanish Parida, Anirudh Pulugurtha, Gordon Redwine, Soham Samanta, and Albert Xu, Chip-Firing on Infinite k-ary Trees, arXiv:2501.06675 [math.CO], 2025. See p. 18.
- Index entries for linear recurrences with constant coefficients, signature (4,-5,2).
Programs
-
GAP
List([1..40], n-> 2^(n+1) -n-2); # G. C. Greubel, Jul 26 2019
-
Magma
I:=[1, 4, 11]; [n le 3 select I[n] else 4*Self(n-1)-5*Self(n-2)+2*Self(n-3): n in [1..40]]; // Vincenzo Librandi, Jun 28 2012
-
Mathematica
CoefficientList[Series[1/((1-x)^2*(1-2*x)),{x,0,40}],x] (* Vincenzo Librandi, Jun 28 2012 *) LinearRecurrence[{4,-5,2},{1,4,11},40] (* Harvey P. Dale, Nov 16 2014 *) a[ n_] := With[{m = n + 1}, If[ m < 0, 0, 2^m - (1 + m)]]; (* Michael Somos, Aug 17 2015 *)
-
PARI
A125128(n)=2<
M. F. Hasler, Jul 30 2015 -
PARI
{a(n) = n++; if( n<0, 0, 2^n - (1+n))}; /* Michael Somos, Aug 17 2015 */
-
Sage
[2^(n+1) -n-2 for n in (1..40)] # G. C. Greubel, Jul 26 2019
Formula
a(n) = A000295(n+1) = 2^(n+1) - n - 2 = Sum_{i=1..n} A125127(i,i) = Sum_{i=1..n} ((2^i)-1). [Edited by M. F. Hasler, Jul 30 2015]
From Colin Barker, Jun 17 2012: (Start)
a(n) = 4*a(n-1) - 5*a(n-2) + 2*a(n-3).
G.f.: x/((1-x)^2*(1-2*x)). (End)
E.g.f.: 2*exp(2*x) - (2+x)*exp(x). - G. C. Greubel, Jul 26 2019
Extensions
Edited by M. F. Hasler, Jul 30 2015
Comments