A125525 Centrist primes: primes such that both the right half and the left half of the prime are prime.
2, 3, 5, 7, 23, 37, 53, 73, 223, 227, 233, 257, 263, 277, 283, 293, 307, 313, 317, 337, 347, 353, 367, 373, 383, 397, 503, 523, 547, 557, 563, 577, 587, 593, 727, 733, 743, 757, 773, 787, 797, 1103, 1117, 1123, 1129, 1153, 1171, 1303, 1307, 1319, 1361, 1367
Offset: 1
Examples
The left half of 23 is 2 which is prime. The right half is 3 which is also prime so 23 is a centrist prime. [Corrected by _N. J. A. Sloane_, Jan 12 2019]
Links
- Zak Seidov, Table of n, a(n) for n = 1..10000
Programs
-
PARI
left(str, n) = /* Get the left n characters from string str */ { my(v, tmp, x); v =""; tmp = Vec(str); ln=length(tmp); if(n > ln, n=ln); for(x=1, n, v=concat(v, tmp[x]); ); return(v) } right(str, n) = /* Get the right n characters from string str.*/ { my(v, ln, s, x); v =""; tmp = Vec(str); ln=length(tmp); if(n > ln, n=ln); s = ln-n+1; for(x=s, ln, v=concat(v, tmp[x]); ); return(v) } /* Political primes, Centrist case */ rep(n) = { my(x,ln,y,lp,rp); forprime(x=2,n, y=Str(x); if(x > 9, ln=floor(length(y)/2), ln=1); lp = eval(left(y,ln)); rp = eval(right(y,ln)); if(isprime(lp)&& isprime(rp),print1(x",") ) ) }
Extensions
Offset changed to 1 by Zak Seidov, Feb 19 2015
Comments