cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A014552 Number of solutions to Langford (or Langford-Skolem) problem (up to reversal of the order).

Original entry on oeis.org

0, 0, 1, 1, 0, 0, 26, 150, 0, 0, 17792, 108144, 0, 0, 39809640, 326721800, 0, 0, 256814891280, 2636337861200, 0, 0, 3799455942515488, 46845158056515936, 0, 0, 111683611098764903232, 1607383260609382393152, 0, 0
Offset: 1

Views

Author

John E. Miller (john@timehaven.us), Eric W. Weisstein, N. J. A. Sloane

Keywords

Comments

These are also called Langford pairings.
2*a(n) = A176127(n) gives the number of ways of arranging the numbers 1,1,2,2,...,n,n so that there is one number between the two 1's, two numbers between the two 2's, ..., n numbers between the two n's.
a(n) > 0 iff n == 0 or 3 (mod 4).

Examples

			Solutions for n=3 and 4: 312132 and 41312432.
Solution for n=16: 16, 14, 12, 10, 13, 5, 6, 4, 15, 11, 9, 5, 4, 6, 10, 12, 14, 16, 13, 8, 9, 11, 7, 1, 15, 1, 2, 3, 8, 2, 7, 3.
		

References

  • Jaromir Abrham, "Exponential lower bounds for the numbers of Skolem and extremal Langford sequences," Ars Combinatoria 22 (1986), 187-198.
  • M. Gardner, Mathematical Magic Show, New York: Vintage, pp. 70 and 77-78, 1978.
  • M. Gardner, Mathematical Magic Show, Revised edition published by Math. Assoc. Amer. in 1989. Contains a postscript on pp. 283-284 devoted to a discussion of early computations of the number of Langford sequences.
  • R. K. Guy, The unity of combinatorics, Proc. 25th Iranian Math. Conf, Tehran, (1994), Math. Appl 329 129-159, Kluwer Dordrecht 1995, Math. Rev. 96k:05001.
  • D. E. Knuth, The Art of Computer Programming, Vol. 4A, Section 7.1.1, p. 2.
  • M. Krajecki, Christophe Jaillet and Alain Bui, "Parallel tree search for combinatorial problems: A comparative study between OpenMP and MPI," Studia Informatica Universalis 4 (2005), 151-190.
  • Roselle, David P. Distributions of integers into s-tuples with given differences. Proceedings of the Manitoba Conference on Numerical Mathematics (Univ. Manitoba, Winnipeg, Man., 1971), pp. 31--42. Dept. Comput. Sci., Univ. Manitoba, Winnipeg, Man., 1971. MR0335429 (49 #211). - From N. J. A. Sloane, Jun 05 2012

Crossrefs

See A050998 for further examples of solutions.
If the zeros are omitted we get A192289.

Formula

a(n) = A176127(n)/2.

Extensions

a(20) from Ron van Bruchem and Mike Godfrey, Feb 18 2002
a(21)-a(23) sent by John E. Miller (john@timehaven.us) and Pab Ter (pabrlos(AT)yahoo.com), May 26 2004. These values were found by a team at Université de Reims Champagne-Ardenne, headed by Michael Krajecki, using over 50 processors for 4 days.
a(24)=46845158056515936 was computed circa Apr 15 2005 by the Krajecki team. - Don Knuth, Feb 03 2007
Edited by Max Alekseyev, May 31 2011
a(27) from the J. E. Miller web page "Langford's problem"; thanks to Eric Desbiaux for reporting this. - N. J. A. Sloane, May 18 2015. However, it appears that the value was wrong. - N. J. A. Sloane, Feb 22 2016
Corrected and extended using results from the Assarpour et al. (2015) paper by N. J. A. Sloane, Feb 22 2016 at the suggestion of William Rex Marshall.

A304271 Number of unrestricted planar Langford sequences.

Original entry on oeis.org

0, 0, 1, 1, 0, 0, 6, 24, 0, 0, 139, 289, 0, 0, 2414, 4455, 0, 0, 33222, 63700, 0, 0, 437489, 794953, 0, 0
Offset: 1

Views

Author

Rory Molinari, May 09 2018

Keywords

Comments

Enumerates the Langford sequences (counted by A014552) that are planar in a sense more general than the one used by A125762. In that sequence the noncrossing joining lines are each restricted to lie in one of the two half-planes separated by the axis of the numerical sequence. Here we allow the joining lines to use the whole plane, requiring them only to be noncrossing and not to pass between the terms of the Langford sequence.

Examples

			When n=4 the Langford sequence 23421314 is not planar in the sense of A125762, but is planar in the sense of this sequence: the line that joins the 3s does not lie entirely "above" or "below" the numerical array but passes around the end of the array.
		

References

  • D. E. Knuth, TAOCP, Vol. 4, in preparation.

Crossrefs

Extensions

a(23) from Rory Molinari, Jun 04 2019
a(24)-a(26) from Rory Molinari, Dec 02 2019
Showing 1-2 of 2 results.