A125905 a(0) = 1, a(1) = -4, a(n) = -4*a(n-1) - a(n-2) for n > 1.
1, -4, 15, -56, 209, -780, 2911, -10864, 40545, -151316, 564719, -2107560, 7865521, -29354524, 109552575, -408855776, 1525870529, -5694626340, 21252634831, -79315912984, 296011017105, -1104728155436, 4122901604639, -15386878263120, 57424611447841
Offset: 0
References
- Harold J. Ahlberg, Edwin N. Nilson and Joseph L. Walsh, The Theory of Splines and Their Applications, Academic Press, 1967, pp. 35-46.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- [Benoît] Clapeyron, Calcul d'une poutre élastique reposant librement sur des appuis inégalement espacés, Comptes rendus hebdomadaires des séances de l'Académie des Sciences, 45 (1857), 1076-1080.
- Felix Flicker, Time quasilattices in dissipative dynamical systems, arXiv:1707.09371 [nlin.CD], 2017. Also SciPost Phys. 5, 001 (2018).
- Pavel Galashin, Alexander Postnikov, and Lauren Williams, Higher secondary polytopes and regular plabic graphs, arXiv:1909.05435 [math.CO], 2019.
- Leon Zaporski and Felix Flicker, Superconvergence of Topological Entropy in the Symbolic Dynamics of Substitution Sequences, arXiv:1811.00331 [nlin.CD], 2018.
- Index entries for linear recurrences with constant coefficients, signature (-4,-1).
Programs
-
Magma
I:=[1, -4]; [n le 2 select I[n] else -4*Self(n-1)-Self(n-2): n in [1..30]]; // Vincenzo Librandi, Jun 28 2012
-
Mathematica
CoefficientList[Series[1/(1+4*x+x^2),{x,0,50}],x] (* Vincenzo Librandi, Jun 28 2012 *)
-
PARI
x='x+O('x^30); Vec(1/(1+4*x+x^2)) \\ G. C. Greubel, Feb 05 2018
Formula
G.f.: 1/(1 + 4*x + x^2).
From Franck Maminirina Ramaharo, Nov 11 2018: (Start)
a(n) = (-2)^n*((1 + sqrt(3)/2)^(n + 1) - (1 - sqrt(3)/2)^(n + 1))/sqrt(3).
E.g.f.: exp(-2*x)*(3*cosh(sqrt(3)*x) - 2*sqrt(3)*sinh(sqrt(3)*x))/3. (End)
a(n) = (-2)^n*Product_{k=1..n}(2 + cos(k*Pi/(n+1))). - Peter Luschny, Nov 28 2019
Sum_{k=0..n} a(k) = (1/6)*(1+a(n)-a(n+1)). - Prabha Sivaramannair, Sep 18 2023
Extensions
Typo in a(22) corrected by Neven Juric, Dec 20 2010
Comments