cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A125905 a(0) = 1, a(1) = -4, a(n) = -4*a(n-1) - a(n-2) for n > 1.

Original entry on oeis.org

1, -4, 15, -56, 209, -780, 2911, -10864, 40545, -151316, 564719, -2107560, 7865521, -29354524, 109552575, -408855776, 1525870529, -5694626340, 21252634831, -79315912984, 296011017105, -1104728155436, 4122901604639, -15386878263120, 57424611447841
Offset: 0

Views

Author

Philippe Deléham, Feb 04 2007

Keywords

Comments

Pisano period lengths: 1, 2, 3, 4, 6, 6, 8, 4, 9, 6, 5, 12, 12, 8, 6, 8, 9, 18, 10, 12, ... - R. J. Mathar, Aug 10 2012
In engineering literature, these numbers are known as Clapeyron numbers, or Clapeyron's numbers, or Clapeyronian numbers, on account of their appearance in Benoît Clapeyron's influential study (1857) of the bending forces imposed upon multiple supports of a horizontal beam. - John Blythe Dobson, Mar 12 2014

References

  • Harold J. Ahlberg, Edwin N. Nilson and Joseph L. Walsh, The Theory of Splines and Their Applications, Academic Press, 1967, pp. 35-46.

Crossrefs

Programs

  • Magma
    I:=[1, -4]; [n le 2 select I[n] else -4*Self(n-1)-Self(n-2): n in [1..30]]; // Vincenzo Librandi, Jun 28 2012
    
  • Mathematica
    CoefficientList[Series[1/(1+4*x+x^2),{x,0,50}],x] (* Vincenzo Librandi, Jun 28 2012 *)
  • PARI
    x='x+O('x^30); Vec(1/(1+4*x+x^2)) \\ G. C. Greubel, Feb 05 2018

Formula

G.f.: 1/(1 + 4*x + x^2).
a(n) = (-1)^n*A001353(n+1) = (-1)^(n + 1)*A106707(n+1).
From Franck Maminirina Ramaharo, Nov 11 2018: (Start)
a(n) = (-2)^n*((1 + sqrt(3)/2)^(n + 1) - (1 - sqrt(3)/2)^(n + 1))/sqrt(3).
E.g.f.: exp(-2*x)*(3*cosh(sqrt(3)*x) - 2*sqrt(3)*sinh(sqrt(3)*x))/3. (End)
a(n) = (-2)^n*Product_{k=1..n}(2 + cos(k*Pi/(n+1))). - Peter Luschny, Nov 28 2019
Sum_{k=0..n} a(k) = (1/6)*(1+a(n)-a(n+1)). - Prabha Sivaramannair, Sep 18 2023

Extensions

Typo in a(22) corrected by Neven Juric, Dec 20 2010