A001075
a(0) = 1, a(1) = 2, a(n) = 4*a(n-1) - a(n-2).
Original entry on oeis.org
1, 2, 7, 26, 97, 362, 1351, 5042, 18817, 70226, 262087, 978122, 3650401, 13623482, 50843527, 189750626, 708158977, 2642885282, 9863382151, 36810643322, 137379191137, 512706121226, 1913445293767, 7141075053842, 26650854921601, 99462344632562, 371198523608647
Offset: 0
2^6 - 1 = 63 does not divide a(2^4) = 708158977, therefore 63 is composite. 2^5 - 1 = 31 divides a(2^3) = 18817, therefore 31 is prime.
G.f. = 1 + 2*x + 7*x^2 + 26*x^3 + 97*x^4 + 362*x^5 + 1351*x^6 + 5042*x^7 + ...
- Serge Lang, Introduction to Diophantine Approximations, Addison-Wesley, New York, 1966.
- Eugene McDonnell, "Heron's Rule and Integer-Area Triangles", Vector 12.3 (January 1996) pp. 133-142.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- P.-F. Teilhet, Reply to Query 2094, L'Intermédiaire des Mathématiciens, 10 (1903), 235-238.
- Indranil Ghosh, Table of n, a(n) for n = 0..1745 (terms 0..200 from T. D. Noe)
- Christian Aebi and Grant Cairns, Lattice Equable Parallelograms, arXiv:2006.07566 [math.NT], 2020.
- Christian Aebi and Grant Cairns, Less than Equable Triangles on the Eisenstein lattice, arXiv:2312.10866 [math.CO], 2023.
- Krassimir T. Atanassov and Anthony G. Shannon, On intercalated Fibonacci sequences, Notes on Number Theory and Discrete Mathematics (2020) Vol. 26, No. 3, 218-223.
- C. Banderier and D. Merlini, Lattice paths with an infinite set of jumps, FPSAC02, Melbourne, 2002.
- Hacène Belbachir, Soumeya Merwa Tebtoub, and László Németh, Ellipse Chains and Associated Sequences, J. Int. Seq., Vol. 23 (2020), Article 20.8.5.
- H. Brocard, Notes élémentaires sur le problème de Pell, Nouvelle Correspondance Mathématique, 4 (1878), 337-343.
- Yurii S. Bystryk, Vitalii L. Denysenko, and Volodymyr I. Ostryk, Lune and Lens Sequences, ResearchGate preprint, 2024. See pp. 30, 43, 56.
- Chris Caldwell, Primality Proving, Arndt's theorem.
- J. B. Cosgrave and K. Dilcher, A role for generalized Fermat numbers, Math. Comp., 2016.
- G. Dresden and Y. Li, Periodic Weighted Sums of Binomial Coefficients, arXiv:2210.04322 [math.NT], 2022.
- E. I. Emerson, Recurrent Sequences in the Equation DQ^2=R^2+N, Fib. Quart., 7 (1969), pp. 231-242.
- Margherita Maria Ferrari and Norma Zagaglia Salvi, Aperiodic Compositions and Classical Integer Sequences, Journal of Integer Sequences, Vol. 20 (2017), Article 17.8.8.
- R. K. Guy, Letter to N. J. A. Sloane concerning A001075, A011943, A094347 [Scanned and annotated letter, included with permission]
- Kiran S. Kedlaya, The 76th William Lowell Putnam Mathematical Competition, Dec 05 2015.
- Kiran S. Kedlaya, Solutions to the 76th William Lowell Putnam Mathematical Competition, Dec 05 2015.
- Tanya Khovanova, Recursive Sequences
- Clark Kimberling, Best lower and upper approximates to irrational numbers, Elemente der Mathematik, 52 (1997) 122-126.
- Pablo Lam-Estrada, Myriam Rosalía Maldonado-Ramírez, José Luis López-Bonilla, and Fausto Jarquín-Zárate, The sequences of Fibonacci and Lucas for each real quadratic fields Q(Sqrt(d)), arXiv:1904.13002 [math.NT], 2019.
- Eugene McDonnell, Heron's Rule and Integer-Area Triangles, At Play With J, 2010.
- Valcho Milchev and Tsvetelina Karamfilova, Domino tiling in grid - new dependence, arXiv:1707.09741 [math.HO], 2017.
- Yong Hao Ng, A partition in three classes of the set of all prime numbers?, Mathematics Stack Exchange.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- F. V. Waugh and M. W. Maxfield, Side-and-diagonal numbers, Math. Mag., 40 (1967), 74-83.
- Index entries for sequences related to Chebyshev polynomials.
- Index entries for two-way infinite sequences
- Index entries for linear recurrences with constant coefficients, signature (4,-1).
-
a001075 n = a001075_list !! n
a001075_list =
1 : 2 : zipWith (-) (map (4 *) $ tail a001075_list) a001075_list
-- Reinhard Zumkeller, Aug 11 2011
-
I:=[1, 2]; [n le 2 select I[n] else 4*Self(n-1) - Self(n-2): n in [1..30]]; // G. C. Greubel, Dec 19 2017
-
A001075 := proc(n)
orthopoly[T](n,2) ;
end proc:
seq(A001075(n),n=0..30) ; # R. J. Mathar, Apr 14 2018
-
Table[ Ceiling[(1/2)*(2 + Sqrt[3])^n], {n, 0, 24}]
CoefficientList[Series[(1-2*x) / (1-4*x+x^2), {x, 0, 24}], x] (* Jean-François Alcover, Dec 21 2011, after Simon Plouffe *)
LinearRecurrence[{4,-1},{1,2},30] (* Harvey P. Dale, Aug 22 2015 *)
Round@Table[LucasL[2n, Sqrt[2]]/2, {n, 0, 20}] (* Vladimir Reshetnikov, Sep 15 2016 *)
ChebyshevT[Range[0, 20], 2] (* Eric W. Weisstein, May 26 2017 *)
a[ n_] := LucasL[2*n, x]/2 /. x->Sqrt[2]; (* Michael Somos, Sep 05 2022 *)
-
{a(n) = subst(poltchebi(abs(n)), x, 2)};
-
{a(n) = real((2 + quadgen(12))^abs(n))};
-
{a(n) = polsym(1 - 4*x + x^2, abs(n))[1 + abs(n)]/2};
-
a(n)=polchebyshev(n,1,2) \\ Charles R Greathouse IV, Nov 07 2016
-
my(x='x+O('x^30)); Vec((1-2*x)/(1-4*x+x^2)) \\ G. C. Greubel, Dec 19 2017
-
[lucas_number2(n,4,1)/2 for n in range(0, 25)] # Zerinvary Lajos, May 14 2009
-
def a(n):
Q = QuadraticField(3, 't')
u = Q.units()[0]
return (u^n).lift().coeffs()[0] # Ralf Stephan, Jun 19 2014
A001835
a(n) = 4*a(n-1) - a(n-2), with a(0) = 1, a(1) = 1.
Original entry on oeis.org
1, 1, 3, 11, 41, 153, 571, 2131, 7953, 29681, 110771, 413403, 1542841, 5757961, 21489003, 80198051, 299303201, 1117014753, 4168755811, 15558008491, 58063278153, 216695104121, 808717138331, 3018173449203, 11263976658481, 42037733184721, 156886956080403, 585510091136891
Offset: 0
- Julio R. Bastida, Quadratic properties of a linearly recurrent sequence. Proceedings of the Tenth Southeastern Conference on Combinatorics, Graph Theory and Computing (Florida Atlantic Univ., Boca Raton, Fla., 1979), pp. 163-166, Congress. Numer., XXIII-XXIV, Utilitas Math., Winnipeg, Man., 1979. MR0561042 (81e:10009).
- Leonhard Euler, (E388) Vollstaendige Anleitung zur Algebra, Zweiter Theil, reprinted in: Opera Omnia. Teubner, Leipzig, 1911, Series (1), Vol. 1, p. 375.
- F. Faase, On the number of specific spanning subgraphs of the graphs G X P_n, Ars Combin. 49 (1998), 129-154.
- R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 329.
- Serge Lang, Introduction to Diophantine Approximations, Addison-Wesley, New York, 1966.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- R. P. Stanley, Enumerative Combinatorics I, p. 292.
- T. D. Noe, Table of n, a(n) for n = 0..200
- Mudit Aggarwal and Samrith Ram, Generating functions for straight polyomino tilings of narrow rectangles, arXiv:2206.04437 [math.CO], 2022.
- R. C. Alperin, A family of nonlinear recurrences and their linear solutions, Fib. Q., 57:4 (2019), 318-321.
- Krassimir T. Atanassov and Anthony G. Shannon, On intercalated Fibonacci sequences, Notes on Number Theory and Discrete Mathematics (2020) Vol. 26, No. 3, 218-223.
- Steve Butler, Paul Horn, and Eric Tressler, Intersecting Domino Tilings, Fibonacci Quart. 48 (2010), no. 2, 114-120.
- Yurii S. Bystryk, Vitalii L. Denysenko, and Volodymyr I. Ostryk, Lune and Lens Sequences, ResearchGate preprint, 2024. See pp. 31, 56.
- Niccolò Castronuovo, On the number of fixed points of the map gamma, arXiv:2102.02739 [math.NT], 2021. Mentions this sequence.
- A. Consilvio et al., Tilings, ordered partitions, and weird languages, MAA FOCUS, June/July 2012, 16-17.
- J. B. Cosgrave and K. Dilcher, A role for generalized Fermat numbers, Math. Comp., to appear 2016; (See paper #10).
- J. B. Cosgrave and K. Dilcher, A role for generalized Fermat numbers, Math. Comp. 86 (2017), 899-933.
- Leonhard Euler, Vollstaendige Anleitung zur Algebra, Zweiter Teil.
- F. Faase, On the number of specific spanning subgraphs of the graphs G X P_n, Preliminary version of paper that appeared in Ars Combin. 49 (1998), 129-154.
- F. Faase, Counting Hamiltonian cycles in product graphs.
- F. Faase, Results from the counting program.
- Alex Fink, Richard K. Guy, and Mark Krusemeyer, Partitions with parts occurring at most thrice, Contributions to Discrete Mathematics, Vol 3, No 2 (2008), pp. 76-114. See Section 13.
- Darren B. Glass, Critical groups of graphs with dihedral actions. II, Eur. J. Comb. 61, 25-46 (2017).
- H. Hosoya and A. Motoyama, An effective algorithm for obtaining polynomials for dimer statistics. Application of operator technique on the topological index to two- and three-dimensional rectangular and torus lattices, J. Math. Physics 26 (1985) 157-167 (Table V).
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 409.
- Tanya Khovanova, Recursive Sequences,
- Clark Kimberling, Best lower and upper approximates to irrational numbers, Elemente der Mathematik, 52 (1997) 122-126.
- David Klarner and Jordan Pollack, Domino tilings of rectangles with fixed width, Disc. Math. 32 (1980) 45-52.
- R. J. Mathar, Paving Rectangular Regions with Rectangular Tiles: Tatami and Non-Tatami Tilings, arXiv:1311.6135 [math.CO], 2013, Table 2.
- R. J. Mathar, Tilings of rectangular regions by rectangular tiles: Counts derived from transfer matrices, arXiv:1406.7788 (2014), eq. (4).
- Valcho Milchev and Tsvetelina Karamfilova, Domino tiling in grid - new dependence, arXiv:1707.09741 [math.HO], 2017.
- Yong Hao Ng, A partition in three classes of the set of all prime numbers?, Math StackExchange.
- J.-C. Novelli and J.-Y. Thibon, Hopf Algebras of m-permutations,(m+1)-ary trees, and m-parking functions, arXiv preprint arXiv:1403.5962 [math.CO], 2014.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
- Jaime Rangel-Mondragon, Polyominoes and Related Families, The Mathematica Journal, 9:3 (2005), 609-640.
- John Riordan, Letter to N. J. A. Sloane, Sep 26 1980 with notes on the 1973 Handbook of Integer Sequences. Note that the sequences are identified by their N-numbers, not their A-numbers.
- David Singmaster, Letter to N. J. A. Sloane, Oct 3 1982.
- Anitha Srinivasan, The Markoff-Fibonacci Numbers, Fibonacci Quart. 58 (2020), no. 5, 222-228.
- Thotsaporn "Aek" Thanatipanonda, Statistics of Domino Tilings on a Rectangular Board, Fibonacci Quart. 57 (2019), no. 5, 145-153. See p. 151.
- Herman Tulleken, Polyominoes 2.2: How they fit together, (2019).
- F. V. Waugh and M. W. Maxfield, Side-and-diagonal numbers, Math. Mag., 40 (1967), 74-83.
- Index entries for sequences related to dominoes.
- Index entries for sequences related to Chebyshev polynomials.
- Index entries for linear recurrences with constant coefficients, signature (4,-1).
-
a:=[1,1];; for n in [3..20] do a[n]:=4*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Dec 23 2019
-
a001835 n = a001835_list !! n
a001835_list =
1 : 1 : zipWith (-) (map (4 *) $ tail a001835_list) a001835_list
-- Reinhard Zumkeller, Aug 14 2011
-
[n le 2 select 1 else 4*Self(n-1)-Self(n-2): n in [1..25]]; // Vincenzo Librandi, Sep 16 2016
-
f:=n->((3+sqrt(3))^(2*n-1)+(3-sqrt(3))^(2*n-1))/6^n; [seq(simplify(expand(f(n))),n=0..20)]; # N. J. A. Sloane, Nov 10 2009
-
CoefficientList[Series[(1-3x)/(1-4x+x^2), {x, 0, 24}], x] (* Jean-François Alcover, Jul 25 2011, after g.f. *)
LinearRecurrence[{4,-1},{1,1},30] (* Harvey P. Dale, Jun 08 2013 *)
Table[Round@Fibonacci[2n-1, Sqrt[2]], {n, 0, 20}] (* Vladimir Reshetnikov, Sep 15 2016 *)
Table[(3*ChebyshevT[n, 2] - ChebyshevU[n, 2])/2, {n, 0, 20}] (* G. C. Greubel, Dec 23 2019 *)
-
{a(n) = real( (2 + quadgen(12))^n * (1 - 1 / quadgen(12)) )} /* Michael Somos, Sep 19 2008 */
-
{a(n) = subst( (polchebyshev(n) + polchebyshev(n-1)) / 3, x, 2)} /* Michael Somos, Sep 19 2008 */
-
[lucas_number1(n,4,1)-lucas_number1(n-1,4,1) for n in range(25)] # Zerinvary Lajos, Apr 29 2009
-
[(3*chebyshev_T(n,2) - chebyshev_U(n,2))/2 for n in (0..20)] # G. C. Greubel, Dec 23 2019
A001834
a(0) = 1, a(1) = 5, a(n) = 4*a(n-1) - a(n-2).
Original entry on oeis.org
1, 5, 19, 71, 265, 989, 3691, 13775, 51409, 191861, 716035, 2672279, 9973081, 37220045, 138907099, 518408351, 1934726305, 7220496869, 26947261171, 100568547815, 375326930089, 1400739172541, 5227629760075, 19509779867759, 72811489710961, 271736178976085
Offset: 0
G.f. = 1 + 5*x + 19*x^2 + 71*x^3 + 265*x^4 + 989*x^5 + 3691*x^6 + ...
- Bastida, Julio R. Quadratic properties of a linearly recurrent sequence. Proceedings of the Tenth Southeastern Conference on Combinatorics, Graph Theory and Computing (Florida Atlantic Univ., Boca Raton, Fla., 1979), pp. 163--166, Congress. Numer., XXIII-XXIV, Utilitas Math., Winnipeg, Man., 1979. MR0561042 (81e:10009)
- Leonhard Euler, (E388) Vollstaendige Anleitung zur Algebra, Zweiter Theil, reprinted in: Opera Omnia. Teubner, Leipzig, 1911, Series (1), Vol. 1, p. 375.
- Serge Lang, Introduction to Diophantine Approximations, Addison-Wesley, New York, 1966.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- P.-F. Teilhet, Reply to Query 2094, L'Intermédiaire des Mathématiciens, 10 (1903), 235-238.
- T. D. Noe, Table of n, a(n) for n=0..200
- Marco Abrate, Stefano Barbero, Umberto Cerruti, and Nadir Murru, Polynomial sequences on quadratic curves, Integers, Vol. 15, 2015, #A38.
- K. Andersen, L. Carbone, and D. Penta, Kac-Moody Fibonacci sequences, hyperbolic golden ratios, and real quadratic fields, Journal of Number Theory and Combinatorics, Vol 2, No. 3 pp 245-278, 2011. See Section 9.
- J. B. Cosgrave and K. Dilcher, A role for generalized Fermat numbers, Math. Comp. 86 (2017), 899-933; see also Paper #10.
- Bruno Deschamps, Sur les bonnes valeurs initiales de la suite de Lucas-Lehmer, Journal of Number Theory, Volume 130, Issue 12, December 2010, Pages 2658-2670.
- Leonhard Euler, Vollstaendige Anleitung zur Algebra, Zweiter Teil.
- Alex Fink, Richard K. Guy, and Mark Krusemeyer, Partitions with parts occurring at most thrice, Contributions to Discrete Mathematics, Vol 3, No 2 (2008), pp. 76-114. See Section 13.
- Taras Goy and Mark Shattuck, Determinants of Toeplitz-Hessenberg Matrices with Generalized Leonardo Number Entries, Ann. Math. Silesianae (2023). See p. 17.
- Christian Kassel and Christophe Reutenauer, Pairs of intertwined integer sequences, arXiv:2507.15780 [math.NT], 2025. See p. 13.
- Tanya Khovanova, Recursive Sequences
- Seong Ju Kim, R. Stees, and L. Taalman, Sequences of Spiral Knot Determinants, Journal of Integer Sequences, Vol. 19 (2016), # 16.1.4
- Clark Kimberling, Best lower and upper approximates to irrational numbers, Elemente der Mathematik, 52 (1997) 122-126.
- Wolfdieter Lang, On polynomials related to powers of the generating function of Catalan's numbers, Fib. Quart. 38 (2000) 408-419. Eq. (44) rhs, m=6.
- Ioana-Claudia Lazăr, Lucas sequences in t-uniform simplicial complexes, arXiv:1904.06555 [math.GR], 2019.
- Donatella Merlini and Renzo Sprugnoli, Arithmetic into geometric progressions through Riordan arrays, Discrete Mathematics 340.2 (2017): 160-174.
- Yong Hao Ng, A partition in three classes of the set of all prime numbers?, Math StackExchange.
- S. Northshield, An Analogue of Stern's Sequence for Z[sqrt(2)], Journal of Integer Sequences, 18 (2015), #15.11.6.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions and Conjectures, Universite du Quebec a Montreal, 1992.
- Ryan Stees, Sequences of Spiral Knot Determinants, Senior Honors Projects, Paper 84, James Madison Univ., May 2016.
- F. V. Waugh and M. W. Maxfield, Side-and-diagonal numbers, Math. Mag., 40 (1967), 74-83.
- H. C. Williams and R. K. Guy, Some fourth-order linear divisibility sequences, Intl. J. Number Theory 7 (5) (2011) 1255-1277.
- H. C. Williams and R. K. Guy, Some Monoapparitic Fourth Order Linear Divisibility Sequences, Integers, Volume 12A (2012) The John Selfridge Memorial Volume.
- Index entries for sequences related to Chebyshev polynomials.
- Index entries for linear recurrences with constant coefficients, signature (4,-1).
-
a001834 n = a001834_list !! (n-1)
a001834_list = 1 : 5 : zipWith (-) (map (* 4) $ tail a001834_list) a001834_list
-- Reinhard Zumkeller, Jan 23 2012
-
I:=[1,5]; [n le 2 select I[n] else 4*Self(n-1)-Self(n-2): n in [1..30]]; // Vincenzo Librandi, Mar 22 2015
-
f:=n->((1+sqrt(3))^(2*n+1)+(1-sqrt(3))^(2*n+1))/2^(n+1); # N. J. A. Sloane, Nov 10 2009
-
a[0] = 1; a[1] = 5; a[n_] := a[n] = 4a[n - 1] - a[n - 2]; Table[ a[n], {n, 0, 25}] (* Robert G. Wilson v, Apr 24 2004 *)
Table[Expand[((1+Sqrt[3])^(2*n+1)+(1+Sqrt[3])^(2*n+1))/2^(n+1)],{n, 0, 20}] (* Anton Vrba, Feb 14 2007 *)
LinearRecurrence[{4, -1}, {1, 5}, 50] (* Sture Sjöstedt, Nov 27 2011 *)
a[c_, n_] := Module[{},
p := Length[ContinuedFraction[ Sqrt[ c]][[2]]];
d := Numerator[Convergents[Sqrt[c], n p]];
t := Table[d[[1 + i]], {i, 0, Length[d] - 1, p}];
Return[t];
] (* Complement of A002531 *)
a[3, 20] (* Gerry Martens, Jun 07 2015 *)
Round@Table[LucasL[2n+1, Sqrt[2]]/Sqrt[2], {n, 0, 20}] (* Vladimir Reshetnikov, Sep 15 2016 *)
-
{a(n) = real( (2 + quadgen(12))^n * (1 + quadgen(12)) )}; /* Michael Somos, Sep 19 2008 */
-
{a(n) = subst( polchebyshev(n-1, 2) + polchebyshev(n, 2), x, 2)}; /* Michael Somos, Sep 19 2008 */
-
[(lucas_number2(n,4,1)-lucas_number2(n-1,4,1))/2 for n in range(1, 27)] # Zerinvary Lajos, Nov 10 2009
A123967
Triangle read by rows: T(0,0)=1; for n >= 1 T(n,k) is the coefficient of x^k in the monic characteristic polynomial of the tridiagonal n X n matrix with main diagonal 5,5,5,... and sub- and superdiagonals 1,1,1,... (0 <= k <= n).
Original entry on oeis.org
1, -5, 1, 24, -10, 1, -115, 73, -15, 1, 551, -470, 147, -20, 1, -2640, 2828, -1190, 246, -25, 1, 12649, -16310, 8631, -2400, 370, -30, 1, -60605, 91371, -58275, 20385, -4225, 519, -35, 1, 290376, -501150, 374115, -157800, 41140, -6790, 693, -40, 1, -1391275, 2704755, -2313450, 1142730, -359275, 74571, -10220, 892, -45, 1
Offset: 0
Triangle starts:
1;
-5, 1;
24, -10, 1;
-115, 73, -15, 1;
551, -470, 147, -20, 1;
-2640, 2828, -1190, 246, -25, 1;
12649, -16310, 8631, -2400, 370, -30, 1;
...
Triangle (0, -5, 1/5, -1/5, 0, 0, 0, ...) DELTA (1, 0, 0, 0, ...) begins:
1;
0, 1;
0, -5, 1;
0, 24, -10, 1:
0, -115, 73, -15, 1;
0, 551, -470, 147, -20, 1;
0, -2640, 2828, -1190, 246, -25, 1;
...
Cf. Chebyshev's S(n,x+k) polynomials :
A207824 (k = 5),
A207823 (k = 4),
A125662 (k = 3),
A078812 (k=2),
A101950 (k = 1),
A049310 (k = 0),
A104562 (k = -1),
A053122 (k = -2),
A207815 (k = -3),
A159764 (k = -4),
A123967 (k = -5).
-
with(linalg): m:=proc(i,j) if i=j then 5 elif abs(i-j)=1 then 1 else 0 fi end: T:=(n,k)->coeff(charpoly(matrix(n,n,m),x),x,k): 1; for n from 1 to 9 do seq(T(n,k),k=0..n) od; # yields sequence in triangular form
-
T[n_, k_] /; 0 <= k <= n := T[n, k] = T[n-1, k-1] - 5 T[n-1, k] - T[n-2, k]; T[0, 0] = 1; T[, ] = 0;
Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 30 2018, after Philippe Deléham *)
-
@CachedFunction
def A123967(n,k):
if n< 0: return 0
if n==0: return 1 if k == 0 else 0
return A123967(n-1,k-1)-A123967(n-2,k)-5*A123967(n-1,k)
for n in (0..9): [A123967(n,k) for k in (0..n)] # Peter Luschny, Nov 20 2012
A195503
Numerators b(n) of Pythagorean approximations b(n)/a(n) to sqrt(3).
Original entry on oeis.org
4, 15, 56, 209, 780, 2911, 10864, 40545, 151316, 564719, 2107560, 7865521, 29354524, 109552575, 408855776, 1525870529, 5694626340, 21252634831, 79315912984, 296011017105, 1104728155436, 4122901604639, 15386878263120, 57424611447841
Offset: 1
A321119
a(n) = ((1 - sqrt(3))^n + (1 + sqrt(3))^n)/2^floor((n - 1)/2); n-th row common denominator of A321118.
Original entry on oeis.org
4, 2, 8, 10, 28, 38, 104, 142, 388, 530, 1448, 1978, 5404, 7382, 20168, 27550, 75268, 102818, 280904, 383722, 1048348, 1432070, 3912488, 5344558, 14601604, 19946162, 54493928, 74440090, 203374108, 277814198, 759002504, 1036816702, 2832635908, 3869452610
Offset: 0
a(0) = ((1 - sqrt(3))^0 + (1 + sqrt(3))^0)/2^floor((0 - 1)/2) = 2*(1 + 1) = 4.
- Harold J. Ahlberg, Edwin N. Nilson and Joseph L. Walsh, The Theory of Splines and Their Applications, Academic Press, 1967. See p. 47, Table 2.5.2.
- Encyclopedia of Mathematics, Quadrature formula
- John C. Holladay, A smoothest curve approximation, Math. Comp. Vol. 11 (1957), 233-243.
- Peter Köhler, On the weights of Sard's quadrature formulas, CALCOLO Vol. 25 (1988), 169-186.
- Leroy F. Meyers and Arthur Sard, Best approximate integration formulas, J. Math. Phys. Vol. 29 (1950), 118-123.
- Arthur Sard, Best approximate integration formulas; best approximation formulas, American Journal of Mathematics Vol. 71 (1949), 80-91.
- Isaac J. Schoenberg, Spline interpolation and best quadrature formulae, Bull. Amer. Math. Soc. Vol. 70 (1964), 143-148.
- Frans Schurer, On natural cubic splines, with an application to numerical integration formulae, EUT report. WSK, Dept. of Mathematics and Computing Science Vol. 70-WSK-04 (1970), 1-32.
- Index entries for linear recurrences with constant coefficients, signature (0,4,0,-1).
Cf.
A002176 (common denominators of Cotesian numbers).
-
LinearRecurrence[{0, 4, 0, -1}, {4, 2, 8, 10}, 50]
-
a(n) := ((1 - sqrt(3))^n + (1 + sqrt(3))^n)/2^floor((n - 1)/2)$
makelist(ratsimp(a(n)), n, 0, 50);
A100099
An inverse Chebyshev transform of x/(1-2x).
Original entry on oeis.org
0, 1, 2, 7, 16, 46, 110, 295, 720, 1870, 4612, 11782, 29224, 73984, 184102, 463687, 1156000, 2902870, 7245020, 18161170, 45356736, 113576596, 283765132, 710118262, 1774619616, 4439253196, 11095532840, 27749232700, 69363052600
Offset: 0
-
CoefficientList[Series[Sqrt[1-4*x^2]*(Sqrt[1-4*x^2]+4*x-1)/(2*(5*x-2)*(4*x^2-1)), {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 01 2014 *)
A103625
a(n) = 3 + 7*a(n-2) + sqrt(1 + 48*a(n-2) + 48*a(n-2)^2), with a(1) = 0, a(2) = 0, a(3) = 2.
Original entry on oeis.org
0, 0, 2, 4, 34, 62, 480, 870, 6692, 12124, 93214, 168872, 1298310, 2352090, 18083132, 32760394, 251865544, 456293432, 3508034490, 6355347660, 48860617322, 88518573814, 680540608024, 1232904685742, 9478707895020, 17172147026580, 132021369922262, 239177153686384
Offset: 1
-
R:=PowerSeriesRing(Integers(), 30); [0,0] cat Coefficients(R!(2*(x^2+x+1)/(1-x-14*x^2+14*x^3+x^4-x^5))); // G. C. Greubel, Jul 15 2018
-
a[1]=0; a[2]=0; a[3]=2; a[n_]:=a[n]= 3+7a[n-2]+Sqrt[1+48a[n-2]+48a[n-2]^2]; Table[a[n],{n,1,20}] (* Herbert Kociemba, May 12 2008 *)
Rest@CoefficientList[Series[2*x^3*(1+x+x^2)/(1-x-14*x^2+14*x^3+x^4-x^5), {x,0,30}], x] (* G. C. Greubel, Jul 15 2018 *)
LinearRecurrence[{1,14,-14,-1,1},{0,0,2,4,34},30] (* Harvey P. Dale, Jun 04 2021 *)
-
my(x='x+O('x^30)); concat([0,0], Vec(2*x^3*(1+x+x^2)/(1-x-14*x^2+14*x^3 + x^4-x^5))) \\ G. C. Greubel, Jul 15 2018
-
@CachedFunction
def b(n): return chebyshev_U(n, -2) # A125905
def A103625(n): return (1/8)*(-16*int(n==0) -4 +5*(-1)^n*(3*b(n) +11*b(n-1)) +5*b(n) +19*b(n-1))
[A103625(n) for n in range(1,41)] # G. C. Greubel, Mar 22 2024
A111645
Expansion of (x+1)*(1-3*x)/((x^2+4*x+1)*(x^2-2*x-1)).
Original entry on oeis.org
-1, 8, -37, 156, -625, 2436, -9341, 35464, -133809, 502896, -1885317, 7056580, -26384961, 98589388, -368228797, 1374944336, -5133041825, 19160828056, -71518973861, 266936079404, -996276071249, 3718290672596, -13877182280637, 51791152239960, -193289149920721
Offset: 0
-
CoefficientList[Series[(x+1)(1-3x)/((x^2+4x+1)(x^2-2x-1)),{x,0,30}],x] (* or *) LinearRecurrence[{-6,-8,2,1},{-1,8,-37,156},30] (* Harvey P. Dale, Nov 19 2015 *)
Showing 1-9 of 9 results.
Comments