cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A127931 Numbers k such that 13 divides 11*k + 2^k.

Original entry on oeis.org

1, 2, 6, 9, 23, 29, 70, 72, 103, 112, 128, 147, 157, 158, 162, 165, 179, 185, 226, 228, 259, 268, 284, 303, 313, 314, 318, 321, 335, 341, 382, 384, 415, 424, 440, 459, 469, 470, 474, 477, 491, 497, 538, 540, 571, 580, 596, 615, 625, 626, 630, 633, 647, 653
Offset: 1

Views

Author

Zak Seidov, Feb 07 2007, Feb 09 2007

Keywords

Comments

Sequence is infinite: starting with the 13th term, a(13)=157, a(i)=a(i-12)+156. In general, for p and p-2 both prime, starting with p-th term, a(i-(p-1))+p(p-1). This particular sequence corresponds to the case p=13.
First differences have period 12. - Charles R Greathouse IV, Oct 11 2013

Crossrefs

Cf. A125957.

Programs

  • Mathematica
    Select[Range[700],Divisible[11#+2^#,13]&] (* or *) LinearRecurrence[ {1,0,0,0,0,0,0,0,0,0,0,1,-1},{1,2,6,9,23,29,70,72,103,112,128,147,157}, 60] (* Harvey P. Dale, Sep 03 2016 *)
  • PARI
    isok(n) = ((11*n + 2^n) % 13) == 0; \\ Michel Marcus, Oct 11 2013

Formula

a(n) = a(n-1) + a(n-12) - a(n-13). - Wesley Ivan Hurt, Feb 22 2022

A225191 Numbers n such that (15^n + 2^n)/17 is prime.

Original entry on oeis.org

3, 67, 199, 479, 563, 2243, 2579, 6599, 7951, 10099, 10909, 13759
Offset: 1

Views

Author

Robert Price, May 07 2013

Keywords

Comments

All terms are odd primes.
a(13) > 10^5.

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[1, 100000]], PrimeQ[(15^# + 2^#)/17]&]
  • PARI
    forprime(p=3,10^6, if(ispseudoprime((15^p + 2^p)/17), print1(p,", ") ) ); \\ Joerg Arndt, Jul 29 2013

Extensions

Removed incorrect first term of "2".

A222265 Numbers n such that (13^n + 2^n)/15 is prime.

Original entry on oeis.org

7, 31, 103, 223, 503, 1171, 1973, 4111, 4729
Offset: 1

Views

Author

Robert Price, May 05 2013

Keywords

Comments

All terms are prime.
a(10) > 10^5.

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[1, 100000]], PrimeQ[(13^# + 2^#)/15]&]
  • PARI
    forprime(p=3,10^6, if(ispseudoprime((13^p + 2^p)/15), print1(p,", ") ) ); \\ Joerg Arndt, Jul 29 2013

Extensions

Removed incorrect first term of "2".

A224507 Numbers n such that (17^n + 2^n)/19 is prime.

Original entry on oeis.org

5, 7, 113, 193, 211, 701, 797, 907, 4153
Offset: 1

Views

Author

Robert Price, Jul 20 2013

Keywords

Comments

All terms are prime.
a(10) > 10^5.

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[1, 100000]], PrimeQ[(17^# + 2^#)/19]&]
  • PARI
    is(n)=ispseudoprime((17^n+2^n)/19) \\ Charles R Greathouse IV, Jun 06 2017

A338525 Numbers k such that (11^k + 6^k)/17 is prime.

Original entry on oeis.org

5, 7, 107, 383, 17359, 21929, 26393
Offset: 1

Views

Author

Tim Johannes Ohrtmann, Nov 01 2020

Keywords

Comments

All terms are prime.
The corresponding primes are 9931, 1162771, ...

Crossrefs

Programs

  • Magma
    [n: n in [1..10000] |IsPrime((11^n + 6^n)/17)]
  • Mathematica
    Select[Range[1, 10000], PrimeQ[(11^# + 6^#)/17] &]
  • PARI
    for(n=1, 10000, if(isprime((11^n + 6^n)/17), print1(n, ", ")))
    
Showing 1-5 of 5 results.