cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A126042 Expansion of f(x^3)/(1-x*f(x^3)), where f(x) is the g.f. of A001764, whose n-th term is binomial(3n,n)/(2n+1).

Original entry on oeis.org

1, 1, 1, 2, 3, 4, 8, 13, 19, 38, 64, 98, 196, 337, 531, 1062, 1851, 2974, 5948, 10468, 17060, 34120, 60488, 99658, 199316, 355369, 590563, 1181126, 2115577, 3540464, 7080928, 12731141, 21430267, 42860534, 77306428, 130771376, 261542752, 473018396, 803538100
Offset: 0

Views

Author

Paul Barry, Dec 16 2006

Keywords

Comments

Row sums of number triangle A111373.
Interleaves T(3n,2n), T(3n+1,2n+1) and T(3n+2,2n+2) for T(n,k) = A047089(n,k).
One step forward and two steps back: number of nonnegative walks of n steps where the steps are size 1 forwards and size 2 backwards. - David Scambler, Mar 15 2011
Brown's criterion ensures that the sequence is complete (see formulae). - Vladimir M. Zarubin, Aug 05 2019
Number of ordered trees with n+1 edges, having nonroot nodes of outdegree 0 or 3. - Emanuele Munarini, Jun 20 2024

Crossrefs

Programs

  • Magma
    [n lt 3 select 1 else Binomial(n, Floor(n/3)) - (&+[Binomial(n,j): j in [0..Floor(n/3)-1]]): n in [0..40]]; // G. C. Greubel, Jul 30 2022
    
  • Maple
    a:= proc(n) option remember; `if`(n<4, [1$3, 2][n+1], (a(n-1)*
           2*(20*n^4-14*n^3-31*n^2-n+8)-6*(3*n-1)*(5*n-6)*a(n-2)
          +9*(n-2)*(15*n^3-48*n^2+15*n+14)*a(n-3)-54*(n-2)*(n-3)*
          (5*n^2-n-2)*a(n-4))/(2*(2*n+1)*(n+1)*(5*n^2-11*n+4)))
        end:
    seq(a(n), n=0..45);  # Alois P. Heinz, Sep 07 2022
  • Mathematica
    Table[Binomial[n, Floor[n/3]] -Sum[Binomial[n,i], {i,0,Floor[n/3] -1}], {n,0,40}] (* David Callan, Oct 26 2017 *)
    a[n_] := Binomial[n, Floor[n/3]] (1 + Hypergeometric2F1[1, -n + Floor[n/3], 1 + Floor[n/3], -1]) - 2^n; Table[a[n], {n, 0, 38}] (* Peter Luschny, Jun 20 2024 *)
  • PARI
    {a(n)=polcoeff((1/x)*serreverse(x*(1+x)^2/((1+x)^3+x^3+x*O(x^n))),n)}
    
  • PARI
    n=30;
    {a0=1;a1=1;a2=1;for(k=1, n/3,print1(a0,", ",a1,", ",a2,", ");
    a0=2*a2;a1=2*a0-binomial(3*k,k)/(2*k+1);a2=2*a1-binomial(3*k+1,k)/(k+1))
    } \\ Vladimir M. Zarubin, Aug 05 2019
    
  • SageMath
    [binomial(n, (n//3)) - sum(binomial(n,j) for j in (0..(n//3)-1)) for n in (0..40)] # G. C. Greubel, Jul 30 2022

Formula

a(n) = Sum_{k=0..n} binomial(3*floor((n+2k)/3) - 2k, floor((n+2k)/3)-k)*(k+1)/(2*floor((n+2k)/3) - k + 1)(2*cos(2*Pi*(n-k)/3) + 1)/3.
G.f.: (1/x)*Series_Reversion( x*(1+x)^2/((1+x)^3+x^3) ). - Paul D. Hanna, Mar 15 2011
From Vladimir M. Zarubin, Aug 05 2019: (Start)
a(0) = 1, a(1) = 1, a(2) = 1 and for k>0
a(3*k) = 2*a(3*k-1),
a(3*k+1) = 2*a(3*k) - binomial(3*k,k)/(2*k+1),
a(3*k+2) = 2*a(3*k+1) - binomial(3*k+1,k)/(k+1),
where binomial(3*k,k)/(2*k+1) = A001764(k)
and binomial(3*k+1,k)/(k+1) = A006013(k). (End)
a(n) = (1/(n+1)) * Sum_{k=0..floor(n/3)} (n-3*k+1) * binomial(n+1,k). - Seiichi Manyama, Jan 27 2024