cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A126274 Partial sum of A005915.

Original entry on oeis.org

1, 15, 72, 220, 525, 1071, 1960, 3312, 5265, 7975, 11616, 16380, 22477, 30135, 39600, 51136, 65025, 81567, 101080, 123900, 150381, 180895, 215832, 255600, 300625, 351351, 408240, 471772, 542445, 620775, 707296, 802560, 907137, 1021615
Offset: 0

Views

Author

Jonathan Vos Post, Mar 09 2007

Keywords

Crossrefs

Programs

  • GAP
    List([0..35],n->(1/4)*(n+1)^2*(n+2)*(3*n+2)); # Muniru A Asiru, Oct 24 2018
  • Magma
    [1/4*(n + 1)^2*(n + 2)*(3*n + 2): n in [0..30]]; // Vincenzo Librandi, May 16 2011
    
  • Maple
    seq(coeff(series((1+10*x+7*x^2)/(1-x)^5,x,n+1), x, n), n = 0 .. 35); # Muniru A Asiru, Oct 24 2018
  • Mathematica
    Table[(3*n^4 + 14*n^3 + 23*n^2 + 16*n + 4)/4, {n,0,10}] (* G. C. Greubel, Oct 23 2018 *)
    LinearRecurrence[{5,-10,10,-5,1},{1,15,72,220,525},40] (* Harvey P. Dale, Mar 31 2022 *)
  • PARI
    vector(30, n, n--; (3*n^4+14*n^3+23*n^2+16*n+4)/4) \\ G. C. Greubel, Oct 23 2018
    

Formula

a(n) = Sum_{i=0..n} (i + 1)*(3*i^2 + 3*i + 1).
a(n) = (3*n^4 + 6*n^3 + 3*n^2)/4 + 2*n^3 + 5*n^2 + 4*n + 1.
a(n) = (1/4)*(n + 1)^2*(n + 2)*(3*n + 2). - N-E. Fahssi, May 03 2008
G.f.: (1 + 10 x + 7 x^2)/(1 - x)^5. - N-E. Fahssi, May 03 2008
a(n) = (n+1)*A000578(n+1) - Sum_{i=0..n} A000578(i). - Bruno Berselli, Apr 24 2010
a(n) = Sum_{i=1..n} Sum_{j=1..n} Sum_{k=1..n} max(i,j,k). - Enrique Pérez Herrero, Feb 26 2013
a(n) = A000217(n+1)*A000326(n+1). - Bruno Berselli, Dec 13 2013
E.g.f.: (3*x^4 + 32*x^3 + 86*x^2 + 56*x + 4)*exp(x)/4. - G. C. Greubel, Oct 23 2018

Extensions

Corrected and extended by Vincenzo Librandi, May 16 2011