A126274 Partial sum of A005915.
1, 15, 72, 220, 525, 1071, 1960, 3312, 5265, 7975, 11616, 16380, 22477, 30135, 39600, 51136, 65025, 81567, 101080, 123900, 150381, 180895, 215832, 255600, 300625, 351351, 408240, 471772, 542445, 620775, 707296, 802560, 907137, 1021615
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
Programs
-
GAP
List([0..35],n->(1/4)*(n+1)^2*(n+2)*(3*n+2)); # Muniru A Asiru, Oct 24 2018
-
Magma
[1/4*(n + 1)^2*(n + 2)*(3*n + 2): n in [0..30]]; // Vincenzo Librandi, May 16 2011
-
Maple
seq(coeff(series((1+10*x+7*x^2)/(1-x)^5,x,n+1), x, n), n = 0 .. 35); # Muniru A Asiru, Oct 24 2018
-
Mathematica
Table[(3*n^4 + 14*n^3 + 23*n^2 + 16*n + 4)/4, {n,0,10}] (* G. C. Greubel, Oct 23 2018 *) LinearRecurrence[{5,-10,10,-5,1},{1,15,72,220,525},40] (* Harvey P. Dale, Mar 31 2022 *)
-
PARI
vector(30, n, n--; (3*n^4+14*n^3+23*n^2+16*n+4)/4) \\ G. C. Greubel, Oct 23 2018
Formula
a(n) = Sum_{i=0..n} (i + 1)*(3*i^2 + 3*i + 1).
a(n) = (3*n^4 + 6*n^3 + 3*n^2)/4 + 2*n^3 + 5*n^2 + 4*n + 1.
a(n) = (1/4)*(n + 1)^2*(n + 2)*(3*n + 2). - N-E. Fahssi, May 03 2008
G.f.: (1 + 10 x + 7 x^2)/(1 - x)^5. - N-E. Fahssi, May 03 2008
a(n) = Sum_{i=1..n} Sum_{j=1..n} Sum_{k=1..n} max(i,j,k). - Enrique Pérez Herrero, Feb 26 2013
E.g.f.: (3*x^4 + 32*x^3 + 86*x^2 + 56*x + 4)*exp(x)/4. - G. C. Greubel, Oct 23 2018
Extensions
Corrected and extended by Vincenzo Librandi, May 16 2011