A126587 a(n) is the number of integer lattice points inside the right triangle with legs 3n and 4n (and hypotenuse 5n).
3, 17, 43, 81, 131, 193, 267, 353, 451, 561, 683, 817, 963, 1121, 1291, 1473, 1667, 1873, 2091, 2321, 2563, 2817, 3083, 3361, 3651, 3953, 4267, 4593, 4931, 5281, 5643, 6017, 6403, 6801, 7211, 7633, 8067, 8513, 8971, 9441, 9923, 10417, 10923, 11441
Offset: 1
Examples
At n=1, three lattice points (1,1), (1,2) and (2,1) are inside the triangle with vertices at the points (0,0), (3n,0) and (0,4n); hence a(1)=3.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..10000
- Zak Seidov Inside points
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
Magma
[6*n^2 - 4*n + 1: n in [1..50] ]; // Vincenzo Librandi, May 23 2011
-
Mathematica
nip[a_,b_]:=Sum[Floor[b-b*i/a-10^-6],{i,a-1}] Table[nip[3k,4k],{k,100}] Table[6*n^2-4*n+1, {n,1,50}] (* G. C. Greubel, Mar 06 2018 *)
-
PARI
a(n)=6*n^2-4*n+1 \\ Charles R Greathouse IV, Jun 17 2017
Formula
a(n) = A186424(2*n-1).
By Pick's theorem, a(n) = 6*n^2 - 4*n + 1. - Nick Hobson, Mar 13 2007
O.g.f.: x*(3+8*x+x^2)/(1-x)^3 = -1 - 12/(-1+x)^3 - 11/(-1+x) - 22/(-1+x)^2. - R. J. Mathar, Dec 10 2007
E.g.f.: exp(x)*(1 + 2*x + 6*x^2) - 1. - Stefano Spezia, May 09 2021
Comments