cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A126719 a(n) = -n^2 + 9*n + 23.

Original entry on oeis.org

23, 31, 37, 41, 43, 43, 41, 37, 31, 23, 13, 1, -13, -29, -47, -67, -89, -113, -139, -167, -197, -229, -263, -299, -337, -377, -419, -463, -509, -557, -607, -659, -713, -769, -827, -887, -949, -1013, -1079, -1147, -1217, -1289, -1363, -1439, -1517, -1597, -1679, -1763, -1849, -1937, -2027, -2119, -2213
Offset: 0

Views

Author

Michael M. Ross, Mar 13 2007

Keywords

Comments

Derivation is similar to that of A126665, which see for further information.

Examples

			For n=8, -1*8^2 + 9*8 + 23 = 31.
		

Crossrefs

Cf. A126665.

Programs

Formula

From Harvey P. Dale, Oct 19 2011: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3), a(0)=23, a(1)=31, a(2)=37.
G.f.: ((38 - 13*x)*x - 23)/(x-1)^3. (End)
E.g.f.: exp(x)*(23 + 8*x - x^2). - Elmo R. Oliveira, Nov 02 2024

A186950 a(n) = n^2 - 47*n + 479.

Original entry on oeis.org

479, 433, 389, 347, 307, 269, 233, 199, 167, 137, 109, 83, 59, 37, 17, -1, -17, -31, -43, -53, -61, -67, -71, -73, -73, -71, -67, -61, -53, -43, -31, -17, -1, 17, 37, 59, 83, 109, 137, 167, 199, 233, 269, 307, 347, 389, 433, 479, 527, 577, 629, 683, 739, 797, 857
Offset: 0

Views

Author

Arkadiusz Wesolowski, Mar 01 2011

Keywords

Comments

a(n) are distinct primes for 0 <= n <= 14. There are 22 distinct (positive and negative) values of primes between a(0) = 479 and a(48) = 527.
For n < 15 and n > 32, the prime numbers of this sequence are in A059425. - Bruno Berselli, Mar 04 2011

Crossrefs

Programs

Formula

G.f.: (479 - 1004*x + 527*x^2)/(1-x)^3. - Bruno Berselli, Mar 05 2011
a(n+19) = -A126665(n). - Arkadiusz Wesolowski, Oct 24 2013
From Elmo R. Oliveira, Nov 02 2024: (Start)
E.g.f.: (479 - 46*x + x^2)*exp(x).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)

A127316 a(n) = 2*n^2 - 4*n + 73.

Original entry on oeis.org

71, 73, 79, 89, 103, 121, 143, 169, 199, 233, 271, 313, 359, 409, 463, 521, 583, 649, 719, 793, 871, 953, 1039, 1129, 1223, 1321, 1423, 1529, 1639, 1753, 1871, 1993, 2119, 2249, 2383, 2521, 2663, 2809, 2959, 3113, 3271, 3433, 3599, 3769, 3943, 4121, 4303, 4489
Offset: 1

Views

Author

Michael M. Ross, Mar 28 2007

Keywords

Comments

Extrapolates a quadratic passing through 71, 73, and 79.

Examples

			If n=10 then 2*n^2 - 4*n + 73 = 233.
		

Crossrefs

Programs

Formula

G.f.: x*(71 - 140*x + 73*x^2)/(1 - x)^3. - Arkadiusz Wesolowski, Oct 24 2013
Sum_{n>=1} 1/a(n) = 1/142 + coth(sqrt(71/2)*Pi)/(2*sqrt(142)). - Amiram Eldar, Jul 30 2024
From Elmo R. Oliveira, Nov 03 2024: (Start)
E.g.f.: exp(x)*(2*x^2 - 2*x + 73) - 73.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 3. (End)

Extensions

Extended by Charles R Greathouse IV, Jul 25 2010

A140947 Four-columned array read by rows: each row gives a series of 4 consecutive primes that share a 2nd-degree polynomial relationship and produce a positive-only integer series from the derived quadratic.

Original entry on oeis.org

17, 19, 23, 29, 41, 43, 47, 53, 79, 83, 89, 97, 227, 229, 233, 239, 347, 349, 353, 359, 349, 353, 359, 367, 379, 383, 389, 397, 439, 443, 449, 457, 569, 571, 577, 587, 641, 643, 647, 653, 673, 677, 683, 691, 677, 683, 691, 701, 1031, 1033, 1039, 1049
Offset: 1

Views

Author

Michael M. Ross, Jul 24 2008

Keywords

Comments

These "proximate-prime polynomials" exhibit high prime densities. Of the 333 under 100000, 46 have greater than 50% prime values for the first 1000 terms. 2221 positive-only PPPs have been found under 1000000. All positive-integer PPPs have complex roots (only negative-integer PPPs, which are excluded) have real roots. The roots mostly have a real part of 1/2 or a multiple of 1/2.

Examples

			For 17, 19, 23, 29 the method of common differences produces coefficients of 1, -1 and 17 for a polynomial expression of n^2 - n + 17.
		

References

  • Purple Math: Finding the Next Number in a Sequence: The Method of Common Differences http://www.purplemath.com/modules/nextnumb.htm
  • Robert Sacks, Method of Common Differences http://www.numberspiral.com/p/common_diff.html

Crossrefs

Formula

Method of common differences: if (P2 - P1) - (P3 - P2) = (P3 - P2) - (P4 - P3) then polynomial is degree 2.

A155557 A proximate-prime polynomial sequence generated by 2*n^2 - 2*n + 53089.

Original entry on oeis.org

53089, 53093, 53101, 53113, 53129, 53149, 53173, 53201, 53233, 53269, 53309, 53353, 53401, 53453, 53509, 53569, 53633, 53701, 53773, 53849, 53929, 54013, 54101, 54193, 54289, 54389, 54493, 54601, 54713, 54829, 54949, 55073, 55201, 55333, 55469, 55609, 55753, 55901
Offset: 1

Views

Author

Michael M. Ross, Jan 24 2009

Keywords

Comments

Sequence produces 634 primes in the first 1000 terms. (A proximate-prime polynomial is a finite polynomial equation that is derived from four successive - proximate, or neighboring - primes.)
Quadratic derived from four successive primes: 53089, 53093, 53101, 53113. Produces more primes in the first 1000 terms than any other quadratic derived from 4 successive primes under 1000000. (This includes 41, 43, 47, 53 = n^2 - n + 41, which produces 582.)
For larger ranges of n, for example n=0..10^6 or n=0..10^7, the polynomial 2*n^2 + 24*n + 144323 generates more primes than 2*n^2 - 2*n + 53089. - Mike Winkler, Oct 25 2013

Examples

			For n=14, 2*(14^2) - (2*14) + 53089 = 53453.
		

Crossrefs

Programs

  • Magma
    [2*n^2 - 2*n + 53089: n in [1..35]]; // Vincenzo Librandi, Jul 20 2011
    
  • Mathematica
    Table[2n^2-2n+53089,{n,30}] (* or *) LinearRecurrence[{3,-3,1},{53089,53093,53101},30] (* Harvey P. Dale, Jul 19 2011 *)
  • Other
    QTest: Derive, analyze and solve quadratic expressions. Generate integer sequences and determine their primality. (http://www.naturalnumbers.org/QTest-NTK.html)
    
  • PARI
    a(n)=2*n^2-2*n+53089 \\ Charles R Greathouse IV, Jun 17 2017

Formula

a(n) = 2*n^2 - 2*n + 53089.
From Harvey P. Dale, Jul 19 2011: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n >= 4.
G.f.: x*(53089 - 106174*x + 53089*x^2)/(1-x)^3. (End)
E.g.f.: exp(x)*(2*x^2 + 53089) - 53089. - Elmo R. Oliveira, Nov 09 2024

Extensions

Edited by Charles R Greathouse IV, Jul 25 2010
Showing 1-5 of 5 results.