A127648 Triangle read by rows: row n consists of n zeros followed by n+1.
1, 0, 2, 0, 0, 3, 0, 0, 0, 4, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 11, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 13, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 14, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 15
Offset: 0
Examples
First few rows of the triangle: 1; 0, 2; 0, 0, 3; 0, 0, 0, 4; 0, 0, 0, 0, 5; 0, 0, 0, 0, 0, 6; 0, 0, 0, 0, 0, 0, 7; ...
Links
- Antti Karttunen, Rows n = 0..360 of the triangle, flattened (Rows n = 0..100 from G. C. Greubel)
Programs
-
Haskell
a127648 n k = a127648_tabl !! n !! k a127648_row n = a127648_tabl !! n a127648_tabl = map reverse $ iterate (\(x:xs) -> x + 1 : 0 : xs) [1] a127648_list = concat a127648_tabl -- Reinhard Zumkeller, Jul 13 2013
-
Magma
[k eq n select n+1 else 0: k in [0..n], n in [0..20]]; // G. C. Greubel, Mar 12 2024
-
Maple
A127648 := proc(n) for i from 0 do if A000217(i) = n+1 then return i ; elif A000217(i) >n then return 0 ; end if; end do; end proc: # R. J. Mathar, Apr 23 2013
-
Mathematica
Flatten[Table[{n,Table[0,{n}]},{n,15}]] (* Harvey P. Dale, Jul 27 2011 *)
-
PARI
A127648(n) = if(ispolygonal(1+n,3), (sqrtint(1+((1+n)*8))-1)/2, 0); \\ Antti Karttunen, Jan 19 2025
-
Python
for i in range(1,15): print(i, end=", ") for j in range(i): print("0", end=", ") # Mohammad Saleh Dinparvar, May 11 2020
-
Python
from math import isqrt from sympy.ntheory.primetest import is_square def A127648(n): return (m:=isqrt(k:=n<<1))+(k>m*(m+1)) if is_square((n<<3)+1) else 0 # Chai Wah Wu, Jun 09 2025
-
SageMath
def A127648(n): return (sqrt(9+8*n)-1)//2 if ((sqrt(9+8*n)-3)/2).is_integer() else 0 [A127648(n) for n in range(153)] # G. C. Greubel, Mar 12 2024
Formula
Infinite lower triangular matrix with (1, 2, 3, ...) in the main diagonal and the rest zeros.
G.f.: 1/(x*y-1)^2. - R. J. Mathar, Aug 11 2015
a(n) = (1/2) (round(sqrt(4 + 2 n)) - round(sqrt(2 + 2 n))) (-1 + round(sqrt(2 + 2 n)) + round(sqrt(4 + 2 n))). - Brian Tenneson, Jan 27 2017
From G. C. Greubel, Mar 13 2024: (Start)
T(n, n) = n+1.
Sum_{k=0..n} T(n, k) = n+1.
Sum_{k=0..n} (-1)^k*T(n, k) = (-1)^n*(n+1).
Sum_{k=0..floor(n/2)} T(n-k, k) = A142150(n+2).
Sum_{k=0..floor(n/2)} (-1)^k*T(n-k, k) = (-1)^floor(n/2)*A142150(n+2). (End)
Comments