A127897
Series reversion of x/(1 + 2*x + 3*x^2 + x^3).
Original entry on oeis.org
0, 1, 2, 7, 27, 114, 507, 2342, 11125, 54002, 266684, 1335610, 6767477, 34629709, 178701317, 928903447, 4859345882, 25563551782, 135153617840, 717740916202, 3826894116962, 20478451476328, 109945087353190, 592048943478464, 3196930550222605, 17306392059508743, 93905862139673832
Offset: 0
-
Flatten[{0,Rest[CoefficientList[Series[2*Sqrt[3]*Sqrt[(1+x)/x]*Sin[ArcSin[3*Sqrt[3]/(2*Sqrt[(1+x)/x])]/3]/3, {x, 0, 20}], x]]}] (* Vaclav Kotesovec, Oct 20 2012 *)
-
{a(n) = my(A = sum(m=1,n, binomial(3*m, m-1)/m * x^m / (1+x +x*O(x^n))^m ) ); polcoeff(A,n)}
for(n=0,30,print1(a(n),", ")) \\ Paul D. Hanna, Feb 04 2018
A365086
G.f. satisfies A(x) = 1 + x*A(x) / (1 + x*A(x))^3.
Original entry on oeis.org
1, 1, -2, -2, 15, -4, -122, 204, 903, -3374, -4635, 43539, -13233, -475123, 873392, 4244591, -16906773, -24952174, 244162840, -74520792, -2901715074, 5483226036, 27740164293, -112969486284, -172903931727, 1714556657881, -513739179725, -21235809823325
Offset: 0
-
a(n) = sum(k=0, n, (-1)^(n-k)*binomial(n, k)*binomial(n+2*k-1, n-k)/(n-k+1));
A127895
Riordan array (1/(1+x)^3, x/(1+x)^3).
Original entry on oeis.org
1, -3, 1, 6, -6, 1, -10, 21, -9, 1, 15, -56, 45, -12, 1, -21, 126, -165, 78, -15, 1, 28, -252, 495, -364, 120, -18, 1, -36, 462, -1287, 1365, -680, 171, -21, 1, 45, -792, 3003, -4368, 3060, -1140, 231, -24, 1, -55, 1287, -6435, 12376, -11628, 5985, -1771, 300, -27, 1
Offset: 0
Triangle begins
1;
-3, 1;
6, -6, 1;
-10, 21, -9, 1;
15, -56, 45, -12, 1;
-21, 126, -165, 78, -15, 1;
28, -252, 495, -364, 120, -18, 1;
-36, 462, -1287, 1365, -680, 171, -21, 1;
45, -792, 3003, -4368, 3060, -1140, 231, -24, 1;
-55, 1287, -6435, 12376, -11628, 5985, -1771, 300, -27, 1;
66, -2002, 12870, -31824, 38760, -26334, 10626, -2600, 378, -30, 1;
Alternating sign version of
A127893.
-
[(-1)^(n-k)*Binomial(n+2*k+2, n-k): k in [0..n], n in [0..10]]; // G. C. Greubel, Apr 29 2018
-
# Uses function InvPMatrix from A357585. Adds column 1, 0, 0, ... to the left.
InvPMatrix(10, n -> binomial(3*n, n)/(2*n+1)); # Peter Luschny, Oct 09 2022
-
Table[(-1)^(n-k)*Binomial[n+2*k+2, n-k], {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Apr 29 2018 *)
-
for(n=0, 10, for(k=0,n, print1((-1)^(n-k)*binomial(n+2*k+2, n-k), ", "))) \\ G. C. Greubel, Apr 29 2018
-
flatten([[(-1)^(n-k)*binomial(n+2*k+2, n-k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Apr 16 2021
A365083
G.f. satisfies A(x) = 1 + x*A(x) / (1 + x)^4.
Original entry on oeis.org
1, 1, -3, 3, 5, -22, 27, 28, -163, 235, 134, -1188, 1983, 408, -8504, 16320, -1551, -59659, 131507, -46683, -408806, 1040147, -612380, -2721835, 8088003, -6523626, -17457420, 61883839, -62900496, -106248240, 466069760, -571001695, -595520019, 3454539427
Offset: 0
-
LinearRecurrence[{-3, -6, -4, -1}, {1, 1, -3, 3, 5}, 1 + 33] (* Robert P. P. McKone, Aug 21 2023 *)
-
a(n) = sum(k=0, n, (-1)^(n-k)*binomial(n+3*k-1, n-k));
A365084
G.f. satisfies A(x) = 1 + x*A(x) / (1 + x)^5.
Original entry on oeis.org
1, 1, -4, 6, 6, -49, 95, 24, -592, 1417, -414, -6809, 20142, -14831, -73353, 274761, -311105, -715647, 3607624, -5463428, -5785294, 45588556, -87189477, -25565196, 552659892, -1305250324, 340413165, 6379267117, -18606431142, 13202513476, 69064770845
Offset: 0
-
LinearRecurrence[{-4, -10, -10, -5, -1}, {1, 1, -4, 6, 6, -49}, 1 + 30] (* Robert P. P. McKone, Aug 21 2023 *)
-
a(n) = sum(k=0, n, (-1)^(n-k)*binomial(n+4*k-1, n-k));
A233581
a(n) = 2*a(n-1) - 3*a(n-2) + a(n-3), a(0) = 1, a(1) = 0, a(2) = -1.
Original entry on oeis.org
1, 0, -1, -1, 1, 4, 4, -3, -14, -15, 9, 49, 56, -26, -171, -208, 71, 595, 769, -176, -2064, -2831, 354, 7137, 10381, -295, -24596, -37926, -2359, 84464, 138079, 20407, -288959, -501060, -114836, 984549, 1812546, 556609, -3339871, -6537023, -2497824, 11275550
Offset: 0
G.f. = 1 - x^2 - x^3 + x^4 + 4*x^5 + 4*x^6 - 3*x^7 - 14*x^8 - 15*x^9 + ...
-
m:=50; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((1-2*x+2*x^2)/(1-2*x+3*x^2-x^3))); // G. C. Greubel, Aug 08 2018
-
CoefficientList[Series[(1-2*x+2*x^2)/(1-2*x+3*x^2-x^3), {x, 0, 50}], x] (* or *) LinearRecurrence[{2,-3,1}, {1,0,-1}, 50] (* G. C. Greubel, Aug 08 2018 *)
-
{a(n) = if( n<0, polcoeff( (1 - x) / (1 - 3*x + 2*x^2 - x^3) + x * O(x^-n), -n), polcoeff( (1 - 2*x + 2*x^2) / (1 - 2*x + 3*x^2 - x^3) + x * O(x^n), n))}
Showing 1-6 of 6 results.
Comments