A127984 a(n) = (n/3 + 7/9)*2^(n - 1) + (-1)^n/9.
1, 3, 7, 17, 39, 89, 199, 441, 967, 2105, 4551, 9785, 20935, 44601, 94663, 200249, 422343, 888377, 1864135, 3903033, 8155591, 17010233, 35418567, 73633337, 152859079, 316902969, 656175559, 1357090361, 2803659207, 5786275385, 11930464711, 24576757305
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- W. Bosma, Signed bits and fast exponentiation, J. Th. des Nombres de Bordeaux Vol.13, Fasc. 1, 2001.
- Aruna Gabhe, Problem 11623, Am. Math. Monthly 119 (2012) 161.
- Index entries for linear recurrences with constant coefficients, signature (3,0,-4).
Crossrefs
Programs
-
Magma
[(n/3+7/9)*2^(n-1)+(-1)^n/9: n in [1..35]]; // Vincenzo Librandi, Jun 15 2017
-
Maple
A127984:=n->(n/3 + 7/9)*2^(n - 1) + (-1)^n/9; seq(A127984(n), n=1..50); # Wesley Ivan Hurt, Mar 14 2014
-
Mathematica
Table[(n/3 + 7/9)2^(n - 1) + (-1)^n/9, {n, 50}] (* Artur Jasinski *) CoefficientList[Series[(1 - 2 x^2) / ((-1 + 2 x)^2 (1 + x)), {x, 0, 40}], x] (* Vincenzo Librandi, Jun 15 2017 *)
Formula
a(n) = (n/3 + 7/9)*2^(n - 1) + (-1)^n/9.
From R. J. Mathar, Apr 04 2008: (Start)
O.g.f.: -x*(-1+2x^2)/((-1+2x)^2*(1+x)).
a(n) = 3*a(n-1) - 4*a(n-3). (End)
a(n) + a(n+1) = A087447(n+1). - R. J. Mathar, Feb 21 2009
A172481(n) = a(n) + 2^(n-1). Application: Problem 11623, AMM 119 (2012) 161. - Stephen J. Herschkorn, Feb 11 2012
From Wolfdieter Lang, Jun 14 2017: (Start)
a(n) = f(n+1)*2^(n-1), where f(n) is a rational Fibonacci type sequence based on fuse(a,b) = (a+b+1)/2 with f(0) = 0, f(1) = 1 and f(n) = fuse(f(n-1),f(n-2)), for n >= 2. For fuse(a,b) see the Jeff Erickson link under A188545. Proof: f(n) = (3*n+4 - (-1)^n/2^(n-2))/9, n >= 0, by induction.
a(n) = a(n-1) + a(n-2) + 2^(n-2), n >= 1, with inputs a(-1) = 0, a(0) = 1/2.
(End)
E.g.f.: (2*exp(-x) + exp(2*x)*(7 + 6*x) - 9)/18. - Stefano Spezia, Feb 19 2020
Comments