A127989 a(n) = 2*n^3 - 2*n + 9.
9, 21, 57, 129, 249, 429, 681, 1017, 1449, 1989, 2649, 3441, 4377, 5469, 6729, 8169, 9801, 11637, 13689, 15969, 18489, 21261, 24297, 27609, 31209, 35109, 39321, 43857, 48729, 53949, 59529, 65481, 71817, 78549, 85689, 93249, 101241, 109677, 118569
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..10000
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Programs
-
Magma
[2*(n-1)*n*(n+1)+9: n in [1..50]]; // Vincenzo Librandi, Sep 13 2011
-
Mathematica
Table[2x^3 - 2x + 9, {x, 1, 100}] LinearRecurrence[{4,-6,4,-1}, {9, 21, 57, 129}, 50] (* G. C. Greubel, May 08 2018 *)
-
PARI
a(n)=2*n^3-2*n+9 \\ Charles R Greathouse IV, Sep 30 2015
Formula
a(n) = 2*(n-1)*n*(n+1)+9 = 3*(2*A007290(n+1)+3).
G.f.: 3*x*(3-5*x+9*x^2-3*x^3)/(1-x)^4. - Bruno Berselli, Sep 09 2011
a(n) = 4*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4). - Wesley Ivan Hurt, Oct 11 2021
Comments