cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A128162 a(n) = 3^n modulo Fibonacci(n).

Original entry on oeis.org

0, 0, 1, 0, 3, 1, 3, 9, 31, 34, 37, 81, 137, 347, 487, 690, 355, 1369, 2001, 1926, 5331, 1369, 4823, 8289, 74043, 77951, 188571, 284781, 490766, 166409, 1333373, 1803615, 1516839, 914943, 3619092, 3987873, 17604245, 8506938, 57277423, 24741861
Offset: 1

Views

Author

Alexander Adamchuk, Feb 19 2007

Keywords

Comments

Numbers k such that a(k) is prime are listed in A128163. Corresponding primes in {a(n)} are {3, 3, 31, 37, 137, 347, 487, 77951, 166409, 13506083561, ...}.

Crossrefs

Cf. A128163, A128161, A057862 (2^n modulo Fibonacci(n)).

Programs

  • Maple
    f:= n -> 3 &^ n mod combinat:-fibonacci(n):
    map(f, [$1..100]); # Robert Israel, Jul 10 2020
  • Mathematica
    Table[PowerMod[3,n,Fibonacci[n]],{n,1,100}]
  • PARI
    a(n)=3^n%fibonacci(n) \\ Charles R Greathouse IV, Jun 19 2017
  • Sage
    [power_mod(3,n,fibonacci(n))for n in range(1,41)] # - Zerinvary Lajos, Nov 28 2009
    

A128163 Numbers k such that A128162(k) is prime.

Original entry on oeis.org

5, 7, 9, 11, 13, 14, 15, 26, 30, 53, 66, 82, 155, 189, 225, 261, 625, 870, 1071, 7655, 8191, 8883, 9226, 12246, 70274, 71595, 108009, 127077
Offset: 1

Views

Author

Alexander Adamchuk, Feb 19 2007

Keywords

Comments

Corresponding primes in A128162 are {3, 3, 31, 37, 137, 347, 487, 77951, 166409, 13506083561, ...}.

Crossrefs

Cf. A128162 (3^n modulo Fibonacci(n)), A128161, A057862 (2^n modulo Fibonacci(n)).

Programs

  • Mathematica
    Do[f=PowerMod[3,n,Fibonacci[n]];If[PrimeQ[f],Print[{n,f}]],{n,1,1071}]
    Select[Range[72000],PrimeQ[PowerMod[3,#,Fibonacci[#]]]&] (* Harvey P. Dale, Sep 11 2019 *)
  • PARI
    is(n)=ispseudoprime(3^n%fibonacci(n)) \\ Charles R Greathouse IV, Jun 19 2017
    
  • PFGW
    ABC2 3^$a % F($a)
    a: from 5 to 1000000
    // Charles R Greathouse IV, Jun 19 2017

Extensions

Corrected and extended by Stefan Steinerberger, Jun 10 2007
a(25)-a(26) from Donovan Johnson, Sep 03 2008
a(27)-a(28) from Michael S. Branicky, Nov 21 2024
Showing 1-2 of 2 results.