cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A128162 a(n) = 3^n modulo Fibonacci(n).

Original entry on oeis.org

0, 0, 1, 0, 3, 1, 3, 9, 31, 34, 37, 81, 137, 347, 487, 690, 355, 1369, 2001, 1926, 5331, 1369, 4823, 8289, 74043, 77951, 188571, 284781, 490766, 166409, 1333373, 1803615, 1516839, 914943, 3619092, 3987873, 17604245, 8506938, 57277423, 24741861
Offset: 1

Views

Author

Alexander Adamchuk, Feb 19 2007

Keywords

Comments

Numbers k such that a(k) is prime are listed in A128163. Corresponding primes in {a(n)} are {3, 3, 31, 37, 137, 347, 487, 77951, 166409, 13506083561, ...}.

Crossrefs

Cf. A128163, A128161, A057862 (2^n modulo Fibonacci(n)).

Programs

  • Maple
    f:= n -> 3 &^ n mod combinat:-fibonacci(n):
    map(f, [$1..100]); # Robert Israel, Jul 10 2020
  • Mathematica
    Table[PowerMod[3,n,Fibonacci[n]],{n,1,100}]
  • PARI
    a(n)=3^n%fibonacci(n) \\ Charles R Greathouse IV, Jun 19 2017
  • Sage
    [power_mod(3,n,fibonacci(n))for n in range(1,41)] # - Zerinvary Lajos, Nov 28 2009
    

A128161 Numbers k such that 2^k modulo Fibonacci(k) is prime, i.e., A057862(k) is prime.

Original entry on oeis.org

5, 7, 9, 13, 14, 19, 25, 88, 100, 113, 130, 440, 503, 2800, 3203, 3346, 4357, 6496, 8822, 16316, 20039, 22381, 30481, 33779, 71864, 110390, 127796, 441190, 457249
Offset: 1

Views

Author

Alexander Adamchuk, Feb 19 2007

Keywords

Comments

Corresponding primes in A057862 are {2, 11, 2, 37, 173, 1663, 18257, 447876604131364627, 55437674149894825801, ...}.

Crossrefs

Cf. A057862 = 2^n modulo Fibonacci(n). Cf. A128162, A128163.

Programs

  • Maple
    select(n->isprime(2 &^n mod combinat:-fibonacci(n)),[$1..3000]); # Muniru A Asiru, Jul 17 2018
  • Mathematica
    Do[f=PowerMod[2,n,Fibonacci[n]];If[PrimeQ[f],Print[{n,f}]],{n,1,503}]
  • PARI
    is(n)=ispseudoprime(2^n%fibonacci(n)) \\ Charles R Greathouse IV, Jun 19 2017
    
  • PFGW
    ABC2 2^$a % F($a)
    a: from 5 to 1000000
    // Charles R Greathouse IV, Jun 19 2017

Extensions

a(14)-a(19) from Stefan Steinerberger, Jun 10 2007
More terms from Ryan Propper, Jan 11 2008
a(25)-a(26) from Donovan Johnson, Sep 03 2008
a(27) from Charles R Greathouse IV, Jun 20 2017
a(28)-a(29) from Charles R Greathouse IV, Jun 30 2017
Showing 1-2 of 2 results.