A111277 Number of permutations avoiding the patterns {2413,4213,2431,4231,4321}; also number of permutations avoiding the patterns {3142,3412,3421,4312,4321}; number of weak sorting class based on 2413 or 3142.
1, 1, 2, 6, 19, 59, 180, 544, 1637, 4917, 14758, 44282, 132855, 398575, 1195736, 3587220, 10761673, 32285033, 96855114, 290565358, 871696091, 2615088291, 7845264892, 23535794696, 70607384109, 211822152349, 635466457070
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000 (corrected by Ray Chandler, Jan 19 2019)
- M. Albert, R. Aldred, M. Atkinson, C. Handley, D. Holton, D. McCaughan and H. van Ditmarsch, Sorting Classes, Elec. J. of Comb. 12 (2005) R31.
- Alice L. L. Gao, Sergey Kitaev, On partially ordered patterns of length 4 and 5 in permutations, arXiv:1903.08946 [math.CO], 2019.
- Alice L. L. Gao, Sergey Kitaev, On partially ordered patterns of length 4 and 5 in permutations, The Electronic Journal of Combinatorics 26(3) (2019), P3.26.
- Sergey Kitaev and Artem Pyatkin, On permutations avoiding partially ordered patterns defined by bipartite graphs, arXiv:2204.08936 [math.CO], 2022.
- Qipeng Kuang, Václav Kůla, Ondřej Kuželka, Yuanhong Wang, and Yuyi Wang, Weighted First Order Model Counting for Two-variable Logic with Axioms on Two Relations, arXiv:2508.11515 [cs.LO], 2025. See p. 20.
- Index entries for linear recurrences with constant coefficients, signature (5,-7,3).
Crossrefs
First column of A128308.
Programs
-
Magma
[(3^n-2*n+3)/4: n in [1..30]]; // Vincenzo Librandi, Jun 24 2011
-
Maple
A111277 := proc(n) (3^n-2*n+3)/4 ; end proc: seq(A111277(n),n=0..30) ; # R. J. Mathar, Jun 25 2011
-
Mathematica
Table[(3^n - 2n + 3)/4, {n, 26}] (* Robert G. Wilson v *)
Formula
a(n) = (3^n-2*n+3)/4.
a(n) = +5*a(n-1) -7*a(n-2) +3*a(n-3). - R. J. Mathar, Jun 25 2011
a(n+1) = sum of row 1 terms of M^n, an infinite bidiagonal matrix with all 1's in the superdiagonal and (1,3,0,0,0,...) in the main diagonal, and the rest zeros. Example: a(5) = 59 = (sum of row 1 terms of M^4) = (1 + 40 + 13 + 4 + 1). - Gary W. Adamson, Jun 23 2011
G.f.: (1-2*x)^2/((1-3*x)*(1-x)^2). - R. J. Mathar, Jun 25 2011
Extensions
a(0) and crossref to A128308 added by Peter J. Taylor, Jul 23 2014
Comments