cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A128414 Riordan array ((1-2x)/(1+2x),x/(1+2x)^2).

Original entry on oeis.org

1, -4, 1, 8, -8, 1, -16, 36, -12, 1, 32, -128, 80, -16, 1, -64, 400, -400, 140, -20, 1, 128, -1152, 1680, -896, 216, -24, 1, -256, 3136, -6272, 4704, -1680, 308, -28, 1, 512, -8192, 21504, -21504, 10560, -2816
Offset: 0

Views

Author

Paul Barry, Mar 02 2007

Keywords

Comments

Inverse is A128417. Row sums are A128415. Diagonal sums are A128416.

Examples

			Triangle begins
1;
-4, 1;
8, -8, 1;
-16, 36, -12, 1;
32, -128, 80, -16, 1;
-64, 400, -400, 140, -20, 1;
128, -1152, 1680, -896, 216, -24, 1;
-256, 3136, -6272, 4704, -1680, 308, -28, 1;
512, -8192, 21504, -21504, 10560, -2816, 416, -32, 1;
		

Crossrefs

Cf. A128413.

Formula

T(n,k) = 2^(n-k)*A110162(n,k). - Philippe Deléham, Jan 18 2014
T(n,k) = T(n-1,k-1) - 4*T(n-1,k) - 4*T(n-2,k), T(0,0) = T(1,1) = T(2,2) = 1, T(1,0) = -4, T(2,0) = 8, T(2,1) = -8, T(n,k) = 0 if k<0 or if k>n. - Philippe Deléham, Jan 18 2014

A247563 a(n) = 3*a(n-1) - 4*a(n-2) with a(0) = 2, a(1) = 3.

Original entry on oeis.org

2, 3, 1, -9, -31, -57, -47, 87, 449, 999, 1201, -393, -5983, -16377, -25199, -10089, 70529, 251943, 473713, 413367, -654751, -3617721, -8234159, -10231593, 2241857, 47651943, 133988401, 211357431, 98118689, -551073657, -2045695727, -3932792553, -3615594751
Offset: 0

Views

Author

Michael Somos, Sep 20 2014

Keywords

Comments

This is the Lucas sequence V_n(P, Q) = V_n(3, 4). U_n(P, Q) = U_n(3, 4) = A049072(n). ( a(n)/2 )^2 + 7*( A049072(n-1)/2 )^2 = 4^n. - Raphie Frank, Dec 04 2015

Examples

			G.f. = 2 + 3*x + x^2 - 9*x^3 - 31*x^4 - 57*x^5 - 47*x^6 + 87*x^7 + ...
		

Crossrefs

Programs

  • Haskell
    a247563 n = a247563_list !! n
    a247563_list = 2 : 3 : zipWith (-) (map (* 3) $ tail a247563_list)
                                       (map (* 4) a247563_list)
    -- Reinhard Zumkeller, Sep 20 2014
    
  • Magma
    [n le 2 select n+1 else 3*Self(n-1)-4*Self(n-2): n in [1..40]]; // Vincenzo Librandi, Dec 05 2015
    
  • Magma
    m:=25; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((2 - 3*x)/(1-3*x+4*x^2)));  // G. C. Greubel, Aug 04 2018
  • Mathematica
    {a[0], a[1]} = {2, 3}; a[n_] := a[n] = 3 a[n - 1] - 4 a[n - 2]; Table[a@ n, {n, 0, 32}] (* Michael De Vlieger, Dec 04 2015 *)
    CoefficientList[Series[(2-3*x)/(1-3*x+4*x^2), {x, 0, 60}], x] (* G. C. Greubel, Aug 04 2018 *)
  • PARI
    {a(n) = if( n<0, n=-n; 4^-n, 1) * polcoeff( (2 - 3*x) / (1 - 3*x + 4*x^2) + x * O(x^n), n)};
    

Formula

G.f.: (2 - 3*x) / (1 - 3*x + 4*x^2).
a(n) = a(-n) * 4^n for all n in Z.
a(n) = (-1)^n * A128415(n) if n > 0.
a(n) = ((3 + sqrt(-7))/2)^n + ((3 - sqrt(-7))/2)^n. - Raphie Frank, Dec 04 2015

A370846 a(n) = 5 + 4^n + 3*((-i*sqrt(7) - 3)^n + (i*sqrt(7) - 3)^n)/2^n.

Original entry on oeis.org

0, 24, 96, 168, 1200, 3960, 16128, 66888, 259152, 1052184, 4195488, 16759272, 67158000, 268359864, 1073772096, 4295178888, 17179113360, 68720897880, 274876666848, 1099509663528, 4398057364272, 17592161341944, 70368774872448, 281474983436232, 1125899763886800
Offset: 1

Views

Author

Eric W. Weisstein, Mar 03 2024

Keywords

Comments

For n > 2 and n != 0 (mod 3), also the number of minimum vertex colorings in the n-antiprism graph.

Programs

  • Mathematica
    Table[5 + 4^n + 3 ((-I Sqrt[7] - 3)^n + (I Sqrt[7] - 3)^n)/2^n, {n, 25}]
    LinearRecurrence[{2, 7, 8, -16}, {0, 24, 96, 168}, 20]
    CoefficientList[Series[-(24 x (-1 + 2 x) (1 + 4 x)/((-1 + x) (-1 + 4 x) (1 + 3 x + 4 x^2))), {x, 0, 20}], x]

Formula

a(n) = 5 + A000302(n) + 3*A128415(n).
a(n) = 2*a(n-1) + 7*a(n-2) + 8*a(n-3) - 16*a(n-4).
G.f.: -24*x^2*(-1+2*x)*(1+4*x)/((-1+x)*(-1+4*x)*(1+3*x+4*x^2)).
Showing 1-3 of 3 results.