A117706
Numbers k such that 6^k - k^6 is prime.
Original entry on oeis.org
1, 7, 13, 35, 53, 115, 145, 307, 10163
Offset: 1
Mohammed Bouayoun (Mohammed.Bouayoun(AT)sanef.com), Apr 13 2006, Jan 08 2008
a(2)=7 because 6^7 - 7^6 = 162287 is prime.
-
Do[If[PrimeQ[(6^n-n^6)],Print[n]],{n,1,3000}]
-
for(x=1,1e5,ispseudoprime(p=6^x-x^6)&&print1(x", ")) \\ M. F. Hasler, Aug 20 2014
A128447
Numbers k such that absolute value of 7^k - k^7 is prime.
Original entry on oeis.org
2, 6, 20, 24, 18582, 20366
Offset: 1
Cf.
A072180,
A109387,
A117705,
A117706,
A128448,
A128449,
A128450,
A128451,
A122003,
A128453,
A128454.
A128449
Numbers k such that absolute value of 9^k - k^9 is prime.
Original entry on oeis.org
2, 10, 50, 7900, 18494, 23840, 36838
Offset: 1
Cf.
A072180,
A109387,
A117705,
A117706,
A128447,
A128448,
A128450,
A128451,
A122003,
A128453,
A128454.
A128450
Numbers k such that absolute value of 10^k - k^10 is prime.
Original entry on oeis.org
Cf.
A072180,
A109387,
A117705,
A117706,
A128447,
A128448,
A128449,
A128451,
A122003,
A128453,
A128454.
-
[n: n in [0..500]| IsPrime(10^n-n^10)]; // Vincenzo Librandi, Apr 01 2015
-
lst={};k=10;Do[If[PrimeQ[Abs[k^n-n^k]], AppendTo[lst, n]], {n, 0, 10^4}];lst (* Vladimir Joseph Stephan Orlovsky, Sep 10 2008 *)
Select[Range[0, 10000], PrimeQ[10^# - #^10] &] (* Vincenzo Librandi, Apr 01 2015 *)
-
is(n)=isprime(abs(10^n-n^10)) \\ Charles R Greathouse IV, Feb 17 2017
A128451
Numbers k such that the absolute value of 11^k - k^11 is prime.
Original entry on oeis.org
8, 14, 80, 212, 230, 1352, 13674, 16094, 44772
Offset: 1
A128454
Numbers k such that the absolute value of 14^k - k^14 is prime.
Original entry on oeis.org
1, 5, 11, 89, 101, 579, 655, 8115
Offset: 1
Cf.
A072180,
A109387,
A117705,
A117706,
A128447,
A128448,
A128449,
A128450,
A128451,
A122003,
A128453.
A239279
Smallest k such that n^k - k^n is prime, or 0 if no such number exists.
Original entry on oeis.org
5, 1, 1, 14, 1, 20, 1, 10, 273, 14, 1, 38, 1, 68, 0
Offset: 2
2^1-1^2 = 1 is not prime. 2^2-2^2 = 0 is not prime. 2^3-3^2 = -1 is not prime. 2^4-4^2 = 0 is not prime. 2^5-5^2 = 7 is prime. So a(2) = 5.
-
a(n)=k=1; if(n>4, forprime(p=1, 100, if(ispower(n)&&ispower(n)%p==0&&n%p==0, return(0)); if(n%p==n, break))); k=1; while(!ispseudoprime(n^k-k^n), k++); return(k)
vector(15, n, a(n+1))
-
import sympy
from sympy import isprime
from sympy import gcd
def Min(x):
k = 1
while k < 5000:
if gcd(k,x) == 1:
if isprime(x**k-k**x):
return k
else:
k += 1
else:
k += 1
x = 1
while x < 100:
print(Min(x))
x += 1
A243114
Primes of the form 6^x-x^6.
Original entry on oeis.org
5, 162287, 13055867207, 1719070799748422589190392551, 174588755932389037098918153698589675008087, 307180606913594390117978657628360735703373091543821695941623353827100004182413811352186951
Offset: 1
Cf.
A072180,
A109387,
A117705,
A117706,
A128447,
A128448,
A128449,
A128450,
A128451,
A122003,
A128453,
A128454.
-
Select[Table[6^x-x^6,{x,200}],PrimeQ] (* Harvey P. Dale, Jan 17 2018 *)
-
for(x=1,1e5,ispseudoprime(p=6^x-x^6)&&print1(p","))
A173640
Primes of form n+2^n+3^n.
Original entry on oeis.org
2, 101, 60083, 11610630703530923996233764322611619865107483053157900065365853867349888133476404509
Offset: 1
-
Select[Table[n+2^n+3^n,{n,0,6!}],PrimeQ[#]&]
Showing 1-9 of 9 results.
Comments