A128535 a(n) = F(n)*L(n-2) where F = Fibonacci and L = Lucas numbers.
0, -1, 2, 2, 9, 20, 56, 143, 378, 986, 2585, 6764, 17712, 46367, 121394, 317810, 832041, 2178308, 5702888, 14930351, 39088170, 102334154, 267914297, 701408732, 1836311904, 4807526975, 12586269026, 32951280098, 86267571273, 225851433716, 591286729880
Offset: 0
Examples
a(7) = 143 because F(7)*L(5) = 13*11. G.f. = -x + 2*x^2 + 2*x^3 + 9*x^4 + 20*x^5 + 56*x^6 + 143*x^7 + ...
References
- Mohammad K. Azarian, Identities Involving Lucas or Fibonacci and Lucas Numbers as Binomial Sums, International Journal of Contemporary Mathematical Sciences, Vol. 7, No. 45, 2012, pp. 2221-2227.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (2,2,-1).
Programs
-
Magma
[Fibonacci(n)*Lucas(n-2): n in [0..30]]; // Vincenzo Librandi, Feb 20 2013
-
Maple
a:= n-> (<<0|1|0>, <0|0|1>, <-1|2|2>>^n. <<0,-1,2>>)[1, 1]: seq(a(n), n=0..30); # Alois P. Heinz, Sep 28 2016
-
Mathematica
Table[Fibonacci[i]LucasL[i-2], {i,0,30}] (* Harvey P. Dale, Feb 16 2011 *) LinearRecurrence[{2, 2, -1}, {0, -1, 2}, 40] (* Vincenzo Librandi, Feb 20 2013 *) a[ n_] := Fibonacci[2 n - 2] + (-1)^n; (* Michael Somos, May 26 2014 *)
-
PARI
a(n)=([0,1,0; 0,0,1; -1,2,2]^n*[0;-1;2])[1,1] \\ Charles R Greathouse IV, Feb 01 2016
-
PARI
a(n) = round(((-1)^n+(2^(-1-n)*(-(3-sqrt(5))^n*(3+sqrt(5))-(-3+sqrt(5))*(3+sqrt(5))^n))/sqrt(5))) \\ Colin Barker, Sep 28 2016
Formula
a(n) = F(2*(n-1)) - (-1)^(n+1), assuming F(0)=0 and L(0)=2.
From R. J. Mathar, Apr 16 2009: (Start)
a(n) = 2*a(n-1) + 2*a(n-2) - a(n-3).
G.f.: x*(-1+4*x)/((1+x)*(x^2-3*x+1)). (End)
a(n+1) = - A116697(2*n). - Reinhard Zumkeller, Feb 25 2011
a(-n) = - A128533(n). - Michael Somos, May 26 2014
0 = a(n)*(+4*a(n) + a(n+1) - 17*a(n+2)) + a(n+1)*(-14*a(n+1) + a(n+2)) + a(n+2)*(+4*a(n+2)) for all n in Z. - Michael Somos, May 26 2014
a(n) = ((-1)^n+(2^(-1-n)*(-(3-sqrt(5))^n*(3+sqrt(5))-(-3+sqrt(5))*(3+sqrt(5))^n)) / sqrt(5)). - Colin Barker, Sep 28 2016
Extensions
More terms from Harvey P. Dale, Feb 16 2011
Comments