cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A114695 Three consecutive elements of the sequence built from a quadratic form over four consecutive Fibonacci numbers A000045.

Original entry on oeis.org

2, 2, 4, 104, 143, 169, 4895, 6764, 7921, 229970, 317810, 372100, 10803704, 14930351, 17480761, 507544127, 701408732, 821223649, 23843770274, 32951280098, 38580030724, 1120149658760, 1548008755919, 1812440220361
Offset: 0

Views

Author

Roger L. Bagula, Feb 21 2006

Keywords

Crossrefs

Programs

  • Mathematica
    F[n_]:= Fibonacci[n]; Flatten[Table[{F[4*n+2]*F[4*n+3], (F[4*n]+F[4*n+2])*F[4*n+ 3], F[4*n+3]^2}, {n, 0, 12}]] (* modified by G. C. Greubel, May 24 2021 *)
    With[{m = Floor[n/3], F = Fibonacci}, Table[F[4*m+3]*(4*F[4*m+2] -(Mod[n^2,3]*F[4*m +2] +Mod[(n+2)^2, 3]*LucasL[4*m+1] +Mod[(n+1)^2, 3]*F[4*m+3])), {n, 0, 40}]] (* G. C. Greubel, May 24 2021 *)
  • Sage
    f=fibonacci;
    def A114695(n): return f(4*(n//3)+3)*( 4*f(4*(n//3)+2) - ((n^2%3)*f(4*(n//3)+2) + ((n+2)^2%3)*(f(4*(n//3)+2) + f(4*(n//3))) + ((n+1)^2%3)*f(4*(n//3)+3) ) )
    [A114695(n) for n in (0..40)] # G. C. Greubel, May 24 2021

Formula

a(3*n) = Fibonacci(4*n+2)*Fibonacci(4*n+3).
a(3*n+1) = Lucas(4*n+1)*Fibonacci(4*n+3).
a(3*n+2) = Fibonacci(4*n+3)*Fibonacci(4*n+3).
From R. J. Mathar, Apr 16 2009: (Start)
a(3*n) = A001654(4*n+2).
a(3*n+1) = A128535(4*n+3).
a(3*n+2) = A007598(4*n+3).
G.f.: (2+2*x+4*x^2+8*x^3+47*x^4-23*x^5-x^6-4*x^7+x^8)/((1-x)*(1+x+x^2)*(1-47*x^3+x^6)).
a(n) = 48*a(n-3) - 48*a(n-6) + a(n-9). (End)
a(n) = F(4*m+3)*( 4*F(4*m+2) - ((n^2 mod 3)*F(4*m+2) + ((n+2)^2 mod 3)*Lucas(4*m+1) + ((n+1)^2 mod 3)*F(4*m+3)) ), where m = floor(n/3) and F = Fibonacci. - G. C. Greubel, May 24 2021

Extensions

Edited by the Associate Editors of the OEIS, Sep 02 2009

A116697 a(n) = -a(n-1) - a(n-3) + a(n-4).

Original entry on oeis.org

1, 1, -2, 2, -2, 5, -9, 13, -20, 34, -56, 89, -143, 233, -378, 610, -986, 1597, -2585, 4181, -6764, 10946, -17712, 28657, -46367, 75025, -121394, 196418, -317810, 514229, -832041, 1346269, -2178308, 3524578, -5702888
Offset: 0

Views

Author

Creighton Dement, Feb 23 2006

Keywords

Crossrefs

Cf. A186679 (first differences).

Programs

  • Haskell
    a116697 n = a116697_list !! n
    a116697_list = [1,1,-2,2]
                   ++ (zipWith (-) a116697_list
                                   $ zipWith (+) (tail a116697_list)
                                                 (drop 3 a116697_list))
    a128535_list = 0 : (map negate $ map a116697 [0,2..])
    a001519_list = 1 : map a116697 [1,3..]
    a186679_list = zipWith (-) (tail a116697_list) a116697_list
    a128533_list = map a186679 [0,2..]
    a081714_list = 0 : (map negate $ map a186679 [1,3..])
    a075193_list = 1 : -3 : (zipWith (+) a186679_list $ drop 2 a186679_list)
    -- Reinhard Zumkeller, Feb 25 2011
    
  • Magma
    A116697:= func< n | (-1)^Floor((n+1)/2)*(1+(-1)^n)/2 -(-1)^n*Fibonacci(n) >;
    [A116697(n): n in [0..50]]; // G. C. Greubel, Jun 08 2025
    
  • Mathematica
    LinearRecurrence[{-1,0,-1,1},{1,1,-2,2},40] (* Harvey P. Dale, Nov 04 2011 *)
  • SageMath
    def A116697(n): return (-1)^(n//2)*((n+1)%2) - (-1)^n*fibonacci(n)
    print([A116697(n) for n in range(51)]) # G. C. Greubel, Jun 08 2025

Formula

G.f.: (1 + 2*x - x^2 + x^3)/((1 + x^2)*(1 + x - x^2)).
a(2*n+1) = A000045(2*n+1) = A001519(n).
a(2*n) = - A128535(n+1). - Reinhard Zumkeller, Feb 25 2011
a(n) = A056594(n) - (-1)^n*A000045(n). - Bruno Berselli, Feb 26 2011
E.g.f.: cos(x) + (2/sqrt(5))*exp(-x/2)*sinh(sqrt(5)*x/2). - G. C. Greubel, Jun 08 2025

A128533 a(n) = F(n)*L(n+2) where F=Fibonacci and L=Lucas numbers.

Original entry on oeis.org

0, 4, 7, 22, 54, 145, 376, 988, 2583, 6766, 17710, 46369, 121392, 317812, 832039, 2178310, 5702886, 14930353, 39088168, 102334156, 267914295, 701408734, 1836311902, 4807526977, 12586269024, 32951280100, 86267571271, 225851433718, 591286729878
Offset: 0

Views

Author

Axel Harvey, Mar 08 2007

Keywords

Comments

Generally, F(n)*L(n+k) = F(2*n + k) + F(k)*(-1)^(n+1): if k = 0 then sequence is A001906, if k = 1 it is A081714.

Examples

			a(4) = 54 because F(4)*L(6) = 3*18.
G.f. = 4*x + 7*x^2 + 22*x^3 + 54*x^4 + 145*x^5 + 376*x^6 + 988*x^7 + ...
		

Crossrefs

Programs

  • GAP
    List([0..30], n -> Fibonacci(2*(n+1)) + (-1)^(n+1)); # G. C. Greubel, Jan 07 2019
  • Magma
    [Fibonacci(n)*Lucas(n+2): n in [0..30]]; // Vincenzo Librandi, Feb 20 2013
    
  • Maple
    with(combinat); A128533:=n->fibonacci(2*n+2)+(-1)^(n+1); seq(A128533(k),k=0..50); # Wesley Ivan Hurt, Oct 19 2013
  • Mathematica
    LinearRecurrence[{2,2,-1}, {0,4,7}, 40] (* Vincenzo Librandi, Feb 20 2013 *)
    a[n_]:= Fibonacci[2n+2] -(-1)^n; (* Michael Somos, May 26 2014 *)
  • PARI
    vector(30, n, n--; fibonacci(2*(n+1)) + (-1)^(n+1)) \\ G. C. Greubel, Jan 07 2019
    
  • Sage
    [fibonacci(2*(n+1)) + (-1)^(n+1) for n in (0..30)] # G. C. Greubel, Jan 07 2019
    

Formula

a(n) = F(2*(n+1)) + (-1)^(n+1), assuming F(0) = 0 and L(0) = 2.
From R. J. Mathar, Apr 16 2009: (Start)
a(n) = 2*a(n-1) + 2*a(n-2) - a(n-3).
G.f.: x*(4-x)/((1+x)*(x^2-3*x+1)). (End)
a(n) = A186679(2*n). - Reinhard Zumkeller, Feb 25 2011
a(-n) = - A128535(n). - Michael Somos, May 26 2014
0 = a(n)*(+4*a(n) + a(n+1) - 17*a(n+2)) + a(n+1)*(-14*a(n+1) + a(n+2)) + a(n+2)*(+4*a(n+2)) for all n in Z. - Michael Somos, May 26 2014

Extensions

More terms from Vincenzo Librandi, Feb 20 2013

A128534 a(n) = Fibonacci(n)*Lucas(n-1).

Original entry on oeis.org

0, 2, 1, 6, 12, 35, 88, 234, 609, 1598, 4180, 10947, 28656, 75026, 196417, 514230, 1346268, 3524579, 9227464, 24157818, 63245985, 165580142, 433494436, 1134903171, 2971215072, 7778742050, 20365011073, 53316291174, 139583862444, 365435296163, 956722026040, 2504730781962
Offset: 0

Views

Author

Axel Harvey, Mar 08 2007

Keywords

Comments

Generally, F(n)*L(n+k) = F(2*n + k) + F(k)*(-1)^(n+1). If k=0 the sequence is A001906; if k=1 it is A081714.
a(n) is the maximum area of a quadrilateral with lengths of sides in order F(n), F(n), L(n-1), L(n-1) for n>1. - J. M. Bergot, Jan 28 2016
Can be obtained (up to signs) by setting x = F(n)/F(n+1) in g.f. for Lucas numbers - see Pongsriiam. - N. J. A. Sloane, Mar 23 2017

Examples

			a(5) = 35 because F(5)*L(4) = 5*7.
		

Crossrefs

Programs

  • Magma
    [Fibonacci(n)*Lucas(n-1): n in [0..30]]; // G. C. Greubel, Dec 21 2017
  • Maple
    seq(combinat:-fibonacci(2*n-1)+(-1)^(n+1),n=0..50); # Robert Israel, Jan 28 2016
  • Mathematica
    Table[Fibonacci[n] LucasL[n - 1], {n, 0, 31}] (* Michael De Vlieger, Jan 29 2016 *)
  • PARI
    concat( 0, Vec(-x*(-2+3*x)/((1+x)*(x^2-3*x+1)) + O(x^40))) \\ Michel Marcus, Jan 28 2016
    

Formula

a(n) = F(2*n - 1) + (-1)^(n+1), assuming F(0)=0 and L(0)=2.
From R. J. Mathar, Apr 16 2009: (Start)
a(n) = 2*a(n-1) + 2*a(n-2) - a(n-3).
G.f.: x*(2-3*x)/((1+x)*(x^2-3*x+1)). (End)
a(n) = (2^(-1-n)*(-5*(-1)^n*2^(1+n) - (-5+sqrt(5))*(3+sqrt(5))^n + (3-sqrt(5))^n*(5+sqrt(5))))/5. - Colin Barker, Apr 05 2016
a(n+1) = A081714(n) + 2*(-1)^n. - A.H.M. Smeets, Feb 26 2022

Extensions

More terms from Michel Marcus, Jan 28 2016

A236144 a(n) = F(floor( (n+3)/2 )) * L(floor( (n+2)/2 )) where F=Fibonacci and L=Lucas numbers.

Original entry on oeis.org

2, 2, 1, 2, 6, 9, 12, 20, 35, 56, 88, 143, 234, 378, 609, 986, 1598, 2585, 4180, 6764, 10947, 17712, 28656, 46367, 75026, 121394, 196417, 317810, 514230, 832041, 1346268, 2178308, 3524579, 5702888, 9227464, 14930351, 24157818, 39088170, 63245985, 102334154
Offset: 0

Views

Author

Michael Somos, Jan 19 2014

Keywords

Examples

			G.f. = 2 + 2*x + x^2 + 2*x^3 + 6*x^4 + 9*x^5 + 12*x^6 + 20*x^7 + 35*x^8 + ...
		

Crossrefs

Programs

  • Magma
    m:=60; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(2-x^2-x^3)/(1-x-x^3-x^4)); // G. C. Greubel, Aug 07 2018
  • Mathematica
    a[ n_] := Fibonacci[ Quotient[ n + 3, 2]] LucasL[ Quotient[ n, 2]];
    CoefficientList[Series[(2-x^2-x^3)/(1-x-x^3-x^4), {x, 0, 60}], x] (* G. C. Greubel, Aug 07 2018 *)
  • PARI
    {a(n) = fibonacci( (n+3)\2 ) * (fibonacci( n\2+1 ) + fibonacci( n\2-1 ))};
    
  • PARI
    x='x+O('x^60); Vec((2-x^2-x^3)/(1-x-x^3-x^4)) \\ G. C. Greubel, Aug 07 2018
    

Formula

G.f.: (2 - x^2 - x^3) / (1 - x - x^3 - x^4) = (1 - x) * (2 + 2*x + x^2) / ((1 + x^2) * (1 - x - x^2)).
a(n) = a(n-1) + a(n-3) + a(n-4) for all n in Z.
0 = a(n)*a(n+2) + a(n+1)*(+a(n+2) -a(n+3)) for all n in Z.
a(n) = A115008(n+2) - A115008(n+1).
a(n) = A115339(n) * A115339(n-1).
a(2*n - 1) = F(n+1) * L(n-1) = A128535(n+1). a(2*n) = F(n+1) * L(n) = A128534(n+1).
a(n) = A000045(n+1)+A057077(n). - R. J. Mathar, Sep 24 2021
Showing 1-5 of 5 results.