cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A129756 Repetitions of odd numbers four times.

Original entry on oeis.org

1, 1, 1, 1, 3, 3, 3, 3, 5, 5, 5, 5, 7, 7, 7, 7, 9, 9, 9, 9, 11, 11, 11, 11, 13, 13, 13, 13, 15, 15, 15, 15, 17, 17, 17, 17, 19, 19, 19, 19, 21, 21, 21, 21, 23, 23, 23, 23, 25, 25, 25, 25, 27, 27, 27, 27, 29, 29, 29, 29, 31, 31, 31, 31, 33, 33, 33, 33, 35, 35, 35, 35, 37, 37, 37, 37
Offset: 0

Views

Author

Keywords

Comments

Conjecture: number of roots of P(x) = x^n - x^(n-1) - x^(n-2) - ... - x - 1 in the right half-plane. - Michel Lagneau, Apr 09 2013

Crossrefs

Programs

  • Magma
    [1+2*Floor(n/4): n in [0..100]]; // Bruno Berselli, Jul 26 2014
    
  • Magma
    I:=[1,1,1,1,3,3,3,3,5]; [n le 9 select I[n] else Self(n-1)+Self(n-4)-Self(n-5): n in [1..100]]; // Vincenzo Librandi, Jul 25 2014
    
  • Mathematica
    Table[1 + 2 Floor[n/4], {n, 0, 100}] (* Bruno Berselli, Jul 26 2014 *)
    CoefficientList[Series[(1 + x^4)/(-1 + x)^2/(1 + x)/(x^2 + 1), {x, 0, 100}], x] (* Vincenzo Librandi, Jul 26 2014 *)
  • Python
    def A129756(n): return (n>>1)|1 # Chai Wah Wu, Jan 31 2023

Formula

a(n) = (Sum_{k=0..n} (k+1)*cos((n-k)*Pi/2)) + (1/4)*(2*cos(n*Pi/2) + 1 + (-1)^n) - 1, with n >= 0.
a(n) = 1 + 2*floor(n/4) = 1 + 2*A002265(n). - R. J. Mathar, Jun 10 2007
G.f.: (1+x^4)/((-1+x)^2*(1+x)*(x^2+1)). - R. J. Mathar, Nov 18 2007
a(n) = -1 + Sum_{k=0..n} ((1/12)*(-5*(k mod 4) + ((k+1) mod 4) + ((k+2) mod 4) + 7*((k+3) mod 4))). - Paolo P. Lava, Aug 21 2009
a(n) = n - A083219(n). - Michel Lagneau, Apr 09 2013
a(n) = (2*n + 1 + 2*cos(n*Pi/2) + cos(n*Pi) + 2*sin(n*Pi/2))/4. - Wesley Ivan Hurt, Oct 02 2017
From Stefano Spezia, May 26 2021: (Start)
E.g.f.: (cos(x) + cosh(x) + sin(x) + x*(cosh(x) + sinh(x)))/2.
a(n) = a(n-1) + a(n-4) - a(n-5) for n > 4. (End)