cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A129872 Sequence M_n arising in enumeration of arrays of directed blocks (see 2007 Quaintance reference for precise definition). [The next term is not an integer.].

Original entry on oeis.org

1, 4, 16, 72, 364, 1916, 10581, 59681, 343903, 2010089
Offset: 1

Views

Author

N. J. A. Sloane, May 26 2007

Keywords

Comments

Warning: as defined the terms are not integral in general: 1, 4, 16, 72, 364, 1916, 10581, 59681, 343903, 2010089, 23798969/2, ... - Jocelyn Quaintance, Mar 31 2013.

Crossrefs

Programs

  • PARI
    listrn(m) = {R = t*O(t); for (n= 1, m, R = (2*t^11 + t^10 + 3*t^9 + 8*t^8 + 12*t^7 + 16*t^6 + 26*t^5 + 20*t^4 + 16*t^3 + 7*t^2 + t - (t^14 - t^12 - 8*t^10 - 11*t^8 - 5*t^6 + t^4)*R^3 - (3*t^13 + t^12 - 5*t^11 - 2*t^10 - 34*t^9 - 14*t^8 - 39*t^7 - 16*t^6 - 11*t^5 - 2*t^4 + 6*t^3 + 2*t^2)*R^2)/(t^12 + t^11 - 7*t^10 - 7*t^9 - 42*t^8 - 35*t^7 - 51*t^6 - 41*t^5 - 14*t^4 - 4*t^3 + 8*t^2 + 6*t + 1);); return(vector(m, i , polcoeff(R, i, t)));}
    listbn(m) = {B = t*O(t); for (n= 1, m, B = (1 + 2*t*B^2 - t^2*B^3 );); return(vector(m, i , polcoeff(B, i, t)));}
    listMn(m) = {b = listbn(m); /* see also A006013 */ s = listsn(m); /* see A129873 */ d = listdn(m); /* see A129880 */ r = listrn(m); for (i=1, m, v = (b[i] + s[i] - d[i] - r[i])/2; print1(v, ", "););}
    \\ Michel Marcus, Mar 30 2013

Formula

See Quaintance reference for generating functions that produce A129872-A129886.

Extensions

Edited by N. J. A. Sloane, Nov 29 2016

A124837 Numerators of third-order harmonic numbers (defined by Conway and Guy, 1996).

Original entry on oeis.org

1, 7, 47, 57, 459, 341, 3349, 3601, 42131, 44441, 605453, 631193, 655217, 1355479, 23763863, 24444543, 476698557, 162779395, 166474515, 34000335, 265842403, 812400067, 20666950267, 21010170067, 192066102203, 194934439103
Offset: 1

Views

Author

Jonathan Vos Post, Nov 10 2006

Keywords

Comments

Denominators are A124838. All fractions reduced. Thanks to Jonathan Sondow for verifying these calculations. He suggests that the equivalent definition in terms of first order harmonic numbers may be computationally simpler. We are happy with the description of A027612 Numerator of 1/n + 2/(n-1) + 3/(n-2) + ... + (n-1)/2 + n, but baffled by the description of A027611.
From Alexander Adamchuk, Nov 11 2006: (Start)
a(n) is the numerator of H(n, (3)) = Sum_{m=1..n} Sum_{k=1..m} HarmonicNumber(k).
Denominators are listed in A124838.
p divides a(p-5) for prime p > 5.
Primes are listed in A129880.
Numbers k such that a(k) is prime are listed in A129881. (End)

Examples

			a(1) = 1 = numerator of 1/1.
a(2) = 7 = numerator of 1/1 + 5/2 = 7/2.
a(3) = 47 = numerator of 7/2 + 13/3 = 47/6.
a(4) = 57 = numerator of 47/6 + 77/12 = 57/4.
a(5) = 549 = numerator of 57/4 + 87/10 = 549/20.
a(6) = 341 = numerator of 549/20 + 223/20 = 341/10
a(7) = 3349 = numerator of 341/10 + 481/35 = 3349/70.
a(8) = 88327 = numerator of 3349/70 + 4609/280 = 88327/1260.
a(9) = 3844 = numerator of 88327/1260 + 4861/252 = 3844/45.
a(10) = 54251 = numerator of 3844/45 + 55991/2520 = 54251/504, or, untelescoping:
a(10) = 54251 = numerator of 1/1 + 5/2 + 13/3 + 77/12 + 87/10 + 223/20 + 481/35 + 4609/252 + 4861/252 + 55991/2520 = 54251/504.
		

References

  • J. H. Conway and R. K. Guy, The Book of Numbers, New York: Springer-Verlag, pp. 143 and 258-259, 1996.

Crossrefs

Programs

  • Haskell
    a124837 n = a213998 (n + 2) (n - 1) -- Reinhard Zumkeller, Jul 03 2012
  • Mathematica
    Table[Numerator[(n+2)!/2!/n!*Sum[1/k,{k,3,n+2}]],{n,1,30}] (* Alexander Adamchuk, Nov 11 2006 *)

Formula

A124837(n)/A124838(n) = Sum{i=1..n} A027612(n)/A027611(n+1).
From Alexander Adamchuk, Nov 11 2006: (Start)
a(n) = numerator(Sum_{m=1..n} Sum_{l=1..m} Sum_{k=1..l} 1/k).
a(n) = numerator(((n+2)!/(2!*n!)) * Sum_{k=3..n+2} 1/k).
a(n) = numerator(((n+2)*(n+1)/2) * Sum_{k=3..n+2} 1/k). (End)
a(n) = numerator(Sum_{k=0..n-1} (-1)^k*binomial(-3,k)/(n-k)). - Gary Detlefs, Jul 18 2011
a(n) = A213998(n+2,n-1). - Reinhard Zumkeller, Jul 03 2012

Extensions

Corrected and extended by Alexander Adamchuk, Nov 11 2006
Showing 1-2 of 2 results.