cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 21 results. Next

A131818 A130296 + A002260 - A000012. Triangle read by rows: row n consists of n, 2, 3, 4, ..., n.

Original entry on oeis.org

1, 2, 2, 3, 2, 3, 4, 2, 3, 4, 5, 2, 3, 4, 5, 6, 2, 3, 4, 5, 6, 7, 2, 3, 4, 5, 6, 7, 8, 2, 3, 4, 5, 6, 7, 8, 9, 2, 3, 4, 5, 6, 7, 8, 9, 10, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12
Offset: 1

Views

Author

Gary W. Adamson, Jul 18 2007

Keywords

Comments

Row sums = A034856; (1, 4, 8, 13, 19, 26, 34, ...).

Examples

			First few rows of the triangle:
  1;
  2, 2;
  3, 2, 3;
  4, 2, 3, 4;
  5, 2, 3, 4, 5;
  6, 2, 3, 4, 5, 6;
  7, 2, 3, 4, 5, 6, 7;
  ...
		

Crossrefs

Programs

  • Mathematica
    Table[Join[{n},Range[2,n]],{n,15}]//Flatten (* Harvey P. Dale, Feb 24 2021 *)
  • PARI
    t(n, k) = if (k==1, n, k); \\ Michel Marcus, Feb 12 2014
    
  • Python
    from math import isqrt, comb
    def A131818(n):
        y = (m:=isqrt(k:=n-1<<1))+(k>m*(m+1))
        return n-comb(y,2) # Chai Wah Wu, Jul 07 2025

Formula

A130296 + A002260 - A000012 as infinite lower triangular matrices.
T(n, 1) = n, T(n, k) = k for k > 1. - Michel Marcus, Feb 12 2014

Extensions

More terms from Michel Marcus, Feb 12 2014

A130301 Triangle read by rows: A130296 * A007318, as infinite lower triangular matrices.

Original entry on oeis.org

1, 3, 1, 5, 3, 1, 7, 6, 4, 1, 9, 10, 10, 5, 1, 11, 15, 20, 15, 6, 1, 13, 21, 35, 35, 21, 7, 1, 15, 28, 56, 70, 56, 28, 8, 1, 17, 36, 84, 126, 126, 84, 36, 9, 1, 19, 45, 120, 210, 252, 210, 120, 45, 10, 1, 21, 55, 165, 330, 462, 462, 330, 165, 55, 11, 1
Offset: 1

Views

Author

Gary W. Adamson, May 20 2007

Keywords

Comments

Row sums = A083706: (1, 4, 9, 18, 35, 68, ...).
The lower triangular matrix A130296 is equal to the restriction of the square array A051340 to its lower left triangular part. So this is also equal to (A051340) * A007318, where (A051340) is the lower triangular part of A051340, i.e., A051340[i,j] replaced by zero for j > i: see Mathar's Maple code. - M. F. Hasler, Aug 15 2015

Examples

			First few rows of the triangle:
   1;
   3,  1;
   5,  3,  1;
   7,  6,  4,  1;
   9, 10, 10,  5,  1;
  11, 15, 20, 15,  6,  1;
  13, 21, 35, 35, 21,  7,  1;
  ...
		

Crossrefs

Programs

Formula

A130301[m,n] = A121775[m,n] for n >= m/2. A130301[m,1] = 2m-1, A130301[m,2] = A000217[m-1], A130301[m,m] = 1, A130301[m,m-1] = m for m>2. - M. F. Hasler, Aug 15 2015

Extensions

Corrected (missing a(15)=1 inserted) by M. F. Hasler, Aug 15 2015
a(26) = 27 corrected and more terms from Georg Fischer, May 29 2023

A130303 A130296 * A000012.

Original entry on oeis.org

1, 3, 1, 5, 2, 1, 7, 3, 2, 1, 9, 4, 3, 2, 1, 11, 5, 4, 3, 2, 1, 13, 6, 5, 4, 3, 2, 1, 15, 7, 6, 5, 4, 3, 2, 1, 17, 8, 7, 6, 5, 4, 3, 2, 1, 19, 9, 8, 7, 6, 5, 4, 3, 2, 1
Offset: 1

Views

Author

Gary W. Adamson, May 20 2007

Keywords

Examples

			1;
3, 1;
5, 2, 1;
7, 3, 2, 1;
9, 4, 3, 2, 1;
11, 5, 4, 3, 2, 1;
13, 6, 5, 4, 3, 2, 1;
15, 7, 6, 5, 4, 3, 2, 1;
17, 8, 7, 6, 5, 4, 3, 2, 1;
19, 9, 8, 7, 6, 5, 4, 3, 2, 1;
		

References

  • H. S. M. Coxeter, Regular Polytopes, 3rd ed., Dover, NY, 1973, pp 159-162

Crossrefs

Cf. A130296, A000012, A034856 (row sums), A130302 (commuted matrix product)

Programs

  • Mathematica
    Clear[e, n, k];
    e[n_, 0] := 2*n - 1;
    e[n_, k_] := 0 /; k >= n;
    e[n_, k_] := (e[n - 1, k]*e[n, k - 1] + 1)/e[n - 1, k - 1];
    Table[Table[e[n, k], {k, 0, n - 1}], {n, 1, 10}];
    Flatten[%]

Formula

A130296 * A000012 as infinite lower triangular matrices. (1,3,5,...) as the left border; (1,2,3,...) in all other columns.
e(n,k)= (e(n - 1, k)*e(n, k - 1) + 1)/e(n - 1, k - 1)

Extensions

Additional comments from Roger L. Bagula and Gary W. Adamson, Mar 28 2009

A131033 A130296 * A097806.

Original entry on oeis.org

1, 3, 1, 4, 2, 1, 5, 2, 2, 1, 6, 2, 2, 2, 1, 7, 2, 2, 2, 2, 1, 8, 2, 2, 2, 2, 2, 1, 9, 2, 2, 2, 2, 2, 2, 1, 10, 2, 2, 2, 2, 2, 2, 2, 1, 11, 2, 2, 2, 2, 2, 2, 2, 2, 1, 12, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 13, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 14, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1
Offset: 1

Views

Author

Gary W. Adamson, Jun 10 2007

Keywords

Comments

Row sums give A016777.
A131032 = A097806 * A130296. [corrected by Georg Fischer, Oct 10 2021]

Examples

			First few rows of the triangle are:
1;
3, 1;
4, 2, 1;
5, 2, 2, 1;
6, 2, 2, 2, 1;
7, 2, 2, 2, 2, 1;
...
		

Crossrefs

Formula

A130296 * A097806 as infinite lower triangular matrices; where A130296 = (1; 2,1; 3,1,1;...) and A097806 = the pairwise operator.

Extensions

Definition corrected, a(36)=2 inserted and more terms from Georg Fischer, Oct 10 2021
More terms from Michel Marcus, Oct 11 2021

A130297 A130296^2.

Original entry on oeis.org

1, 4, 1, 8, 2, 1, 13, 3, 2, 1, 19, 4, 3, 2, 1, 26, 5, 4, 3, 2, 1, 34, 6, 5, 4, 3, 2, 1, 43, 7, 6, 5, 4, 3, 2, 1, 53, 8, 7, 6, 5, 4, 3, 2, 1, 64, 9, 8, 7, 6, 5, 4, 3, 2, 1
Offset: 1

Views

Author

Gary W. Adamson, May 20 2007

Keywords

Comments

Left border = A034856: (1, 4, 8, 13, 19, 26, 34, ...).
Row sums = A028387: (1, 5, 11, 19, 29, 41, 55, ...).

Examples

			First few rows of the triangle:
   1;
   4, 1;
   8, 2, 1;
  13, 3, 2, 1;
  19, 4, 3, 2, 1;
  26, 5, 4, 3, 2, 1;
  ...
		

Crossrefs

Programs

  • Python
    from math import comb, isqrt
    def A130297(n): return (a:=comb(r:=(m:=isqrt(k:=n<<1))+(k>m*(m+1))+1,2))+1-n+(a-1 if ((k2:=n-1<<1)==(m2:=isqrt(k2))*(m2+1)) else 0) # Chai Wah Wu, Nov 09 2024

Formula

Square of A130296 as an infinite lower triangular matrix.

A130298 A051340 * A130296.

Original entry on oeis.org

1, 5, 2, 12, 4, 3, 22, 6, 5, 4, 35, 8, 7, 6, 5, 51, 10, 9, 8, 7, 6, 70, 12, 11, 10, 9, 8, 7, 92, 14, 13, 12, 11, 10, 9, 8, 117, 16, 15, 14, 13, 12, 11, 10, 9, 145, 18, 17, 16, 15, 14, 13, 12, 11, 10
Offset: 1

Views

Author

Gary W. Adamson, May 20 2007

Keywords

Comments

Row sums = A003215: (1, 7, 19, 37, 61, 91, ...).
Left border = A000326: (1, 5, 12, 22, 35, ...).

Examples

			First few rows of the triangle:
   1;
   5,  2;
  12,  4,  3;
  22,  6,  5,  4;
  35,  8,  7,  6, 5;
  51, 10,  9,  8, 7, 6;
  70, 12, 11, 10, 9, 8, 7;
  ...
		

Crossrefs

Formula

A051340 * A130296 as infinite lower triangular matrices.

A130300 A007318 * A130296.

Original entry on oeis.org

1, 3, 1, 8, 3, 1, 20, 7, 4, 1, 48, 15, 11, 5, 1, 112, 31, 26, 16, 6, 1, 256, 63, 57, 42, 22, 7, 1, 576, 127, 120, 99, 64, 29, 8, 1, 1280, 255, 247, 219, 163, 93, 37, 9, 1, 2816, 511, 502, 466, 382, 256, 130, 46, 10, 1
Offset: 1

Views

Author

Gary W. Adamson, May 20 2007

Keywords

Comments

Row sums = A001787: (1, 4, 12, 32, 80, 192, ...).
Left border = A001792: (1, 3, 8, 20, 48, 112, ...).

Examples

			First few rows of the triangle:
    1;
    3,  1;
    8,  3,  1;
   20,  7,  4,  1;
   48, 15, 11,  5,  1;
  112, 31, 26, 16,  6,  1;
  256, 63, 57, 42, 22,  7,  1;
  ...
		

Crossrefs

Formula

Binomial transform of A130296.

A130302 A000012 * A130296.

Original entry on oeis.org

1, 3, 1, 6, 2, 1, 10, 3, 2, 1, 15, 4, 3, 2, 1, 21, 5, 4, 3, 2, 1, 28, 6, 5, 4, 3, 2, 1, 36, 7, 6, 5, 4, 3, 2, 1
Offset: 1

Views

Author

Gary W. Adamson, May 20 2007

Keywords

Comments

Row sums = n^2. A130303 = A130296 * A000012.

Examples

			First few rows of the triangle are:
1;
3, 1;
6, 2, 1;
10, 3, 2, 1;
15, 4, 3, 2, 1;
21, 5, 4, 3, 2, 1;
...
		

Crossrefs

Formula

A000012 * A130296 as infinite lower triangular matrices. Triangular series as the left border; (1,2,3...) in all other columns.

A131032 A097806 * A130296.

Original entry on oeis.org

1, 3, 1, 5, 2, 1, 7, 2, 2, 1, 9, 2, 2, 2, 1, 11, 2, 2, 2, 2, 1, 13, 2, 2, 2, 2, 2, 1, 15, 2, 2, 2, 2, 2, 2, 1, 17, 2, 2, 2, 2, 2, 2, 2, 1, 19, 2, 2, 2, 2, 2, 2, 2, 2, 1, 21, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 23, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1
Offset: 1

Views

Author

Gary W. Adamson, Jun 10 2007

Keywords

Comments

Row sums give A008574.

Examples

			First few rows of the triangle are:
1;
3, 1;
5, 2, 1;
7, 2, 2, 1;
9, 2, 2, 2, 1;
11, 2, 2, 2, 2, 1;
13, 2, 2, 2, 2, 2, 1;
...
		

Crossrefs

Formula

A097806 * A130296 as infinite lower triangular matrices. A097806 = the pairwise operator, A130296 = (1; 2,1; 3,1,1; ...).

Extensions

Definition corrected and more terms from Georg Fischer, Oct 10 2021

A193094 Augmentation of the triangular array P=A130296 whose n-th row is (n+1,1,1,1,1...,1) for 0<=k<=n. See Comments.

Original entry on oeis.org

1, 2, 1, 6, 4, 3, 24, 18, 16, 13, 120, 96, 90, 84, 71, 720, 600, 576, 558, 532, 461, 5040, 4320, 4200, 4128, 4050, 3908, 3447, 40320, 35280, 34560, 34200, 33888, 33462, 32540, 29093, 362880, 322560, 317520, 315360, 313800, 312096, 309330, 302436
Offset: 0

Views

Author

Clark Kimberling, Jul 30 2011

Keywords

Comments

For an introduction to the unary operation "augmentation" as applied to triangular arrays or sequences of polynomials, see A193091.
Regarding W=A193093:
col 1: A000142, n!
col 2: A001593, n*n!
col 3: A130744, n*(n+2)*n!
diag (1,1,3,13,71,...): A003319, indecomposable permutations.
It appears that T(n,k) is the number of indecomposable permutations p of [n+2] for which p(k+2) = 1. For example, T(2,1) = 4 counts 2413, 3412, 4213, 4312. - David Callan, Aug 27 2014

Examples

			First 5 rows:
1
2.....1
6.....4....3
24....18...16...13
120...96...90...84...71
		

Crossrefs

Programs

  • Mathematica
    p[n_, k_] := If[k == 0, n + 1, 1]
    Table[p[n, k], {n, 0, 5}, {k, 0, n}] (* A130296 *)
    m[n_] := Table[If[i <= j, p[n + 1 - i, j - i], 0], {i, n}, {j, n + 1}]
    TableForm[m[4]]
    w[0, 0] = 1; w[1, 0] = p[1, 0]; w[1, 1] = p[1, 1];
    v[0] = w[0, 0]; v[1] = {w[1, 0], w[1, 1]};
    v[n_] := v[n - 1].m[n]
    TableForm[Table[v[n], {n, 0, 6}]] (* A193094 *)
    Flatten[Table[v[n], {n, 0, 9}]]
Showing 1-10 of 21 results. Next