A051340 A simple 2-dimensional array, read by antidiagonals: T[i,j] = 1 for j>0, T[i,0] = i+1; i,j = 0,1,2,3,...
1, 1, 2, 1, 1, 3, 1, 1, 1, 4, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 1, 9, 1, 1, 1, 1, 1, 1, 1, 1, 1, 10, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 11, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 12, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 13
Offset: 0
Examples
Northwest corner: 1...1...1...1...1...1...1 2...1...1...1...1...1...1 3...1...1...1...1...1...1 4...1...1...1...1...1...1 5...1...1...1...1...1...1 6...1...1...1...1...1...1 The Mathematica code shows that the weight array of this array (i.e., the array of which this array is the accumulation array), has northwest corner 1....0...0...0...0...0...0 1...-1...0...0...0...0...0 1...-1...0...0...0...0...0 1...-1...0...0...0...0...0 1...-1...0...0...0...0...0. - _Clark Kimberling_, Feb 05 2011
Links
- G. C. Greubel, Antidiagonals n = 0..100, flattened
- Johann Cigler, Some elementary observations on Narayana polynomials and related topics, arXiv:1611.05252 [math.CO], 2016. See p. 24.
- A. V. Mikhalev and A. A. Nechaev, Linear recurring sequences over modules, Acta Applic. Math., 42 (1996), 161-202.
Programs
-
Magma
[k eq n select n+1 else 1: k in [0..n], n in [0..15]]; // G. C. Greubel, Mar 18 2023
-
Maple
A051340 := proc(n, k) if k=0 then n+1; else 1; end if; end proc: # R. J. Mathar, Jul 16 2015
-
Mathematica
(* This program generates A051340, then its accumulation array A141419, then its weight array described under Example. *) f[n_,0]:=0; f[0,k_]:=0; (* needed for the weight array *) f[n_,1]:=n; f[n_,k_]:=1/;k>1; TableForm[Table[f[n,k],{n,1,10},{k,1,15}]] (* A051340 *) Table[f[n-k+1,k],{n,14},{k,n,1,-1}]//Flatten s[n_,k_]:=Sum[f[i,j],{i,1,n},{j,1,k}]; (* accumulation array of {f(n,k)} *) TableForm[Table[s[n,k],{n,1,10},{k,1,15}]] (* A141419 *) Table[s[n-k+1,k],{n,14},{k,n,1,-1}]//Flatten w[m_,n_]:=f[m,n]+f[m-1,n-1]-f[m,n-1]-f[m-1,n]/;Or[m>0,n>0]; TableForm[Table[w[n,k],{n,1,10},{k,1,15}]] (* weight array *) Table[w[n-k+1,k],{n,14},{k,n,1,-1}]//Flatten (* Clark Kimberling, Feb 05 2011 *) f[n_] := Join[ Table[1, {n - 1}], {n}]; Array[ f, 14] // Flatten (* Robert G. Wilson v, Mar 04 2012 *) Table[PadLeft[{n},n,1],{n,15}]//Flatten (* Harvey P. Dale, Jun 17 2025 *)
-
Python
from math import comb, isqrt def A051340(n): a = (m:=isqrt(k:=n+2<<1))+(k>m*(m+1)) return 1 if n-comb(a,2)+1 else a-1 # Chai Wah Wu, Jun 21 2025
-
SageMath
def A051340(n,k): return n+1 if (k==n) else 1 flatten([[A051340(n,k) for k in range(n+1)] for n in range(16)]) # G. C. Greubel, Mar 18 2023
Formula
For n>0, a(n(n+3)/2)=n+1, and if k is not of the form n*(n+3)/2, then a(k)=1. - Benoit Cloitre, Oct 31 2002, corrected by M. F. Hasler, Aug 15 2015
T(n,0) = n+1 and T(n,k) = 1 if k >= 0, for n >= 0. - Clark Kimberling, Feb 05 2011
Extensions
Edited by M. F. Hasler, Aug 15 2015
Comments