0, 1, 0, 2, 2, 0, 0, 3, 3, 3, 0, 0, 0, 0, 0, 4, 4, 4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 5, 5, 5, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 6, 6, 6, 6, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0
A247983
Least number k such that log(2) - sum{1/(h*2^h), h=1..k} < 1/2^n.
Original entry on oeis.org
1, 1, 2, 3, 3, 4, 5, 6, 7, 7, 8, 9, 10, 11, 12, 13, 14, 15, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63
Offset: 1
Let w(n) = log(2) - sum{1/(h*2^h), h=1..n}. Approximations are shown here:
n .... w(n) ...... 1/2^n
1 ... 0.193147 .... 0.5
2 ... 0.0681472 ... 0.25
3 ... 0.0264805 ... 0.125
4 ... 0.0108555 ... 0.0625
5 ... 0.0046055 ... 0. 03125
a(4) = 3 because w(3) < 1/2^4 < w(2).
- Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, p. 15.
-
z = 200; s[k_] := s[k] = Sum[1/(h*2^h), {h, 1, k}];
N[Table[Log[2] - s[n], {n, 1, z/8}]]
f[n_] := f[n] = Select[Range[z], Log[2] - s[#] < 1/2^n &, 1];
u = Flatten[Table[f[n], {n, 1, z}]] (* A247983 *)
A275970
a(n) = 3*2^n + n - 1.
Original entry on oeis.org
2, 6, 13, 26, 51, 100, 197, 390, 775, 1544, 3081, 6154, 12299, 24588, 49165, 98318, 196623, 393232, 786449, 1572882, 3145747, 6291476, 12582933, 25165846, 50331671, 100663320, 201326617, 402653210, 805306395, 1610612764, 3221225501, 6442450974, 12884901919, 25769803808, 51539607585, 103079215138, 206158430243, 412316860452, 824633720869
Offset: 0
-
LinearRecurrence[{4,-5,2},{2,6,13}, 25] (* or *) Table[3*2^n + n - 1, {n,0,25}] (* G. C. Greubel, Aug 18 2016 *)
-
a(n)=3*2^n+n-1 \\ Charles R Greathouse IV, Aug 27 2016
A277046
Triangle read by rows: T(n,k) = 2^n - n + k - 1 for n >= 1, with 1 <= k <= 2n-1.
Original entry on oeis.org
1, 2, 3, 4, 5, 6, 7, 8, 9, 12, 13, 14, 15, 16, 17, 18, 27, 28, 29, 30, 31, 32, 33, 34, 35, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519
Offset: 1
Triangle begins:
1;
2, 3, 4;
5, 6, 7, 8, 9;
12, 13, 14, 15, 16, 17, 18;
27, 28, 29, 30, 31, 32, 33, 34, 35;
58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68;
...
Written as an isosceles triangle the sequence begins:
. 1;
. 2, 3, 4;
. 5, 6, 7, 8, 9;
. 12, 13, 14, 15, 16, 17, 18;
. 27, 28, 29, 30, 31, 32, 33, 34, 35;
. 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68;
..
-
Table[2^n-n+k-1,{n,10},{k,2n-1}]//Flatten (* Harvey P. Dale, Nov 27 2021 *)
Comments