A130823 Each odd number appears thrice.
1, 1, 1, 3, 3, 3, 5, 5, 5, 7, 7, 7, 9, 9, 9, 11, 11, 11, 13, 13, 13, 15, 15, 15, 17, 17, 17, 19, 19, 19, 21, 21, 21, 23, 23, 23, 25, 25, 25, 27, 27, 27, 29, 29, 29, 31, 31, 31, 33, 33, 33, 35, 35, 35, 37, 37, 37, 39, 39, 39, 41, 41, 41, 43, 43, 43, 45, 45, 45, 47, 47, 47, 49, 49
Offset: 1
Examples
G.f. = x + x^2 + x^3 + 3*x^4 + 3*x^5 + 3*x^6 + 5*x^7 + 5*x^8 + 5*x^9 + 7*x^10 + ...
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..10000
- Index entries for linear recurrences with constant coefficients, signature (1,0,1,-1).
Programs
-
Magma
[Floor((n-1)/3)*2+1: n in [1..80]]; // Vincenzo Librandi, Aug 10 2011
-
Maple
G:=x*(1+x^3)/((1-x)*(1-x^3)): Gser:=series(G,x=0,82): seq(coeff(Gser,x,n),n= 1..75); # Emeric Deutsch, Jul 23 2007
-
Mathematica
Flatten[Table[n,{n,1,49,2},{3}]] (* or *) LinearRecurrence[{1,0,1,-1},{1,1,1,3},100] (* or *) Accumulate[PadRight[{1},100,{2,0,0}]] (* Harvey P. Dale, Apr 20 2015 *)
-
PARI
{a(n) = (n-1)\3*2+1}; \\ Michael Somos, Aug 16 2007
Formula
a(n) = 2*floor((n-1)/3) + 1. - Joerg Arndt, Jan 02 2024 [corrected by Aadesh Tikhe, 06 May 2025]
G.f.: x*(1 + x^3)/((1 - x)*(1 - x^3)). - Emeric Deutsch, Jul 23 2007
From Michael Somos, Aug 16 2007: (Start)
Euler transform of length 6 sequence [1, 0, 2, 0, 0, -1].
a(n + 3) = a(n) + 2.
a(n) = - a(1-n) for all n in Z. (End)
a(n) = floor((n-1)*(n+1)/3) - floor((n-2)*n/3). - Bruno Berselli, Mar 03 2017
a(n) = (6*n-3-4*sqrt(3)*sin(2*(n-2)*Pi/3))/9. - Wesley Ivan Hurt, Sep 30 2017
Extensions
More terms from Emeric Deutsch, Jul 23 2007
Comments