cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A063787 a(2^k) = k + 1 and a(2^k + i) = 1 + a(i) for k >= 0 and 0 < i < 2^k.

Original entry on oeis.org

1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 3, 4, 4, 5, 4, 5, 5, 6, 4
Offset: 1

Views

Author

Reinhard Zumkeller, Aug 16 2001

Keywords

Comments

Hamming weights of odd numbers. - Friedjof Tellkamp, Jan 11 2024

Examples

			k = 3: a(2^3) = a(8) = 4 = 3 + 1.
k = 3, i = 5: a(2^3 + 5) = a(13) = 3 = 1 + 2 = 1 + a(5).
From _Omar E. Pol_, Jun 12 2009: (Start)
Triangle begins:
  1;
  2,2;
  3,2,3,3;
  4,2,3,3,4,3,4,4;
  5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5;
  6,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6;
  7,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,3,4,4,5,...
(End)
		

Crossrefs

Cf. A330038 (partial sums).

Programs

  • Mathematica
    Table[DigitCount[2 n - 1, 2, 1], {n, 1, 105}] (* Friedjof Tellkamp, Jan 11 2024 *)
  • PARI
    a(n) = hammingweight(n-1) + 1; \\ Michel Marcus, Nov 23 2022
  • Python
    def a(n): return bin(n-1).count('1') + 1
    print([a(n) for n in range(1, 106)]) # Michael S. Branicky, Dec 16 2021
    

Formula

a(n) = A000120(n-1) + 1.
a(n) = log(A131136)/log(2). - Stephen Crowley, Aug 25 2008
a(n) = A007814(n) + A000120(n). - Gary W. Adamson, Jun 04 2009
a(n) = A000120(A086799(n)). - Reinhard Zumkeller, Jul 31 2010
a(n) = A000120(A047457(n)-1) = A000120(A047457(n)+1). - Ilya Lopatin, Mar 16 2014
a(n) = A000120(2n-1). - Friedjof Tellkamp, Jan 11 2024

A080978 a(n) = 2*A006046(n) + 1.

Original entry on oeis.org

1, 3, 7, 11, 19, 23, 31, 39, 55, 59, 67, 75, 91, 99, 115, 131, 163, 167, 175, 183, 199, 207, 223, 239, 271, 279, 295, 311, 343, 359, 391, 423, 487, 491, 499, 507, 523, 531, 547, 563, 595, 603, 619, 635, 667, 683, 715, 747, 811, 819, 835, 851, 883, 899, 931, 963
Offset: 0

Views

Author

Antti Karttunen, Mar 02 2003

Keywords

Comments

The number of edges in A080973-trees.
Conjectured partial sums of A131136. - Sean A. Irvine, Jun 25 2022

Crossrefs

Programs

A131137 Denominator of (exponential) expansion of log((2*x/3-1)/(x-1)).

Original entry on oeis.org

1, 3, 9, 27, 27, 81, 243, 243, 729, 2187, 729, 2187, 6561, 6561, 19683, 59049, 59049, 177147, 531441, 177147, 531441, 1594323, 1594323, 4782969, 14348907, 14348907, 43046721, 129140163, 14348907, 43046721, 129140163, 129140163, 387420489
Offset: 0

Views

Author

Paul Barry, Jun 17 2007

Keywords

Comments

a(n) = 3^A131138(n).
Also, starting at second term, denominator of (1-(2/3)^n)*(n-1)!;
Conjecture: starting at third term, also equals the denominator of polylog(-n,1/4)/4. - Wouter Meeussen, Feb 13 2014

Crossrefs

Cf. A131136.

Programs

  • Mathematica
    Denominator[CoefficientList[Series[Log[(2 x/3 - 1)/(x - 1)], {x, 0, 32}], x] Range[0, 32]!]; (* or *) Prepend[Table[Denominator[(1 - (2/3)^n) (n - 1)!], {n, 32}], 1]; (* or *) Join[{1, 3}, Table[Denominator[PolyLog[-n, 1/4]/4 ], {n, 31}]] (* Wouter Meeussen, Feb 13 2014 *)
  • PARI
    a(n)=if(n<4,3^n,denominator(polylog(1-n,1/4)/4)) \\ Charles R Greathouse IV, Jul 15 2014

A131135 Denominator of (ordinary) expansion of log((x/2-1)/(x-1)).

Original entry on oeis.org

1, 2, 8, 24, 64, 160, 128, 896, 2048, 4608, 10240, 22528, 16384, 106496, 229376, 491520, 1048576, 2228224, 524288, 9961472, 4194304, 6291456, 92274688, 192937984, 134217728, 838860800, 1744830464, 3623878656, 7516192768
Offset: 0

Views

Author

Paul Barry, Jun 17 2007

Keywords

Crossrefs

Formula

a(n) = 2*A090634(n) for n > 0.
a(n) = denominator((1-1/2^n)/n), for n > 0, conjectured. - Michel Marcus, Sep 12 2019
Showing 1-4 of 4 results.