cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A242062 Expansion of x * (1 - x^12) / ((1 - x^3) * (1 - x^4) * (1 - x^7)) in powers of x.

Original entry on oeis.org

0, 1, 0, 0, 1, 1, 0, 1, 2, 1, 1, 2, 2, 1, 2, 3, 2, 2, 3, 3, 2, 3, 4, 3, 3, 4, 4, 3, 4, 5, 4, 4, 5, 5, 4, 5, 6, 5, 5, 6, 6, 5, 6, 7, 6, 6, 7, 7, 6, 7, 8, 7, 7, 8, 8, 7, 8, 9, 8, 8, 9, 9, 8, 9, 10, 9, 9, 10, 10, 9, 10, 11, 10, 10, 11, 11, 10, 11, 12, 11, 11, 12
Offset: 0

Views

Author

Michael Somos, Aug 13 2014

Keywords

Examples

			G.f. = x + x^4 + x^5 + x^7 + 2*x^8 + x^9 + x^10 + 2*x^11 + 2*x^12 + x^13 + ...
		

Crossrefs

Cf. A131372.

Programs

  • Magma
    m:=50; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(x*(1 -x+x^3-x^5+x^6)/(1-x-x^7+x^8))); // G. C. Greubel, Aug 05 2018
  • Maple
    a:= n -> [0, 1, 0, 0, 1, 1, 0][n mod 7 + 1] + floor(n/7):
    seq(a(n), n=0..20); # Robert Israel, Aug 13 2014
  • Mathematica
    a[ n_] := Quotient[ n+3, 7] + {1, 0, 0, 0, 0, -1, 0}[[Mod[ n, 7, 1]]];
    a[ n_] := Sign[n] * SeriesCoefficient[ x * (1 - x^12) / ((1 - x^3) * (1 - x^4) * (1 - x^7)), {x, 0, Abs[n]}];
    CoefficientList[Series[x (1 - x + x^3 - x^5 + x^6)/(1 - x - x^7 + x^8), {x, 0, 100}], x] (* Vincenzo Librandi, Aug 14 2014 *)
    LinearRecurrence[{1,0,0,0,0,0,1,-1},{0,1,0,0,1,1,0,1},90] (* Harvey P. Dale, Sep 29 2024 *)
  • PARI
    {a(n) = (n+3)\7 + (n%7==1) - (n%7==6)};
    
  • PARI
    {a(n) = sign(n) * polcoeff( x * (1 - x^12) / ((1 - x^3) * (1 - x^4) * (1 - x^7)) + x * O(x^abs(n)), abs(n))};
    

Formula

Euler transform of length 12 sequence [0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, -1].
G.f.: x * (1 - x + x^3 - x^5 + x^6) / (1 - x - x^7 + x^8).
G.f.: x / (1 - x^3 / (1 - x / (1 + x / (1 - x^5 / (1 - x / (1 + x^2 / (1 - x^2))))))).
a(n) = -a(-n) = a(n-7) + 1 = a(n-1) + a(n-7) - a(n-8) for all n in Z.
0 = 2*a(n) - a(n+1) + a(n+2) - 2*a(n+3) + (a(n+1) - a(n+2))^2 for all n in Z.
a(n+1) - a(n) = A131372(n).

A098457 Farey Bisection Expansion of sqrt(7).

Original entry on oeis.org

1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1
Offset: 1

Views

Author

John W. Layman, Sep 08 2004

Keywords

Comments

We define the Farey Bisection Expansion (FBE) of the nonnegative real number x to be the sequence {a(n)} of 0's and 1's determined as follows. Set na(0)=0, da(0)=1, nb(0)=1 and db(0)=0. For n=1, 2, 3,..., set num=na(n-1)+nb(n-1) and den=da(n-1)+db(n-1); if xA010121.

Examples

			G.f. = x + x^2 + x^4 + x^6 + x^7 + x^8 + x^9 + x^11 + x^13 + x^14 + x^15 + ...
		

Crossrefs

Programs

  • Magma
    &cat [[1, 1, 0, 1, 0, 1, 1]^^20]; // Wesley Ivan Hurt, Jul 11 2016
    
  • Maple
    seq(op([1, 1, 0, 1, 0, 1, 1]), n=0..20); # Wesley Ivan Hurt, Jul 11 2016
  • Mathematica
    LinearRecurrence[{0, 0, 0, 0, 0, 0, 1},{1, 1, 0, 1, 0, 1, 1},105] (* Ray Chandler, Aug 26 2015 *)
  • PARI
    {a(n) = [1, 1, 0, 1, 0, 1, 1][(n-1)%7+1]}; /* Michael Somos, Dec 26 2016 */

Formula

From Wesley Ivan Hurt, Jul 11 2016: (Start)
G.f.: x * (1 + x + x^3 + x^5 + x^6) / (1 - x^7).
a(n) = a(n-7) for n>7.
a(n) = 1 - Sum_{k=1..4} floor((n + k)/7)*(-1)^k. (End)
a(n+1) = (-1)^(mod(mod(n, 7), 3)>0) * A131372(n). - Michael Somos, Dec 26 2016
Showing 1-2 of 2 results.