cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A080476 Floor( geometric mean of next n numbers ).

Original entry on oeis.org

1, 2, 4, 8, 12, 18, 24, 32, 40, 50, 60, 72, 84, 98, 112, 128, 144, 162, 180, 200, 220, 242, 264, 288, 312, 338, 364, 392, 420, 450, 480, 512, 544, 578, 612, 648, 684, 722, 760, 800, 840, 882, 924, 968, 1012, 1058, 1104, 1152, 1200, 1250, 1300, 1352, 1404, 1458
Offset: 1

Views

Author

Amarnath Murthy, Mar 11 2003

Keywords

Comments

Essentially the same as A007590: a(n) = A007590(n) for n>=2.
Also, floor( harmonic mean of next n numbers ).
Also, floor(sqrt(A131479(n)+1)). - Richard R. Forberg, Aug 04 2013

Examples

			a(4) = floor( (7*8*9*10)^(1/4) ) = 8.
a(4) = floor( 1/( (1/7 + 1/8 + 1/9 + 1/10 )*(1/4)) ) = 8.
		

Crossrefs

Programs

  • PARI
    a(n)=if(n<2,n>0,n^2\2);

Formula

a(n+3) = 2*a(n+2) - a(n+1) if n even, a(n+3) = 2*a(n+2) - a(n+1) + 2 if n odd, with a(1) = 1, a(2) = 2, a(3) = 4. - Yosu Yurramendi, Sep 12 2008
From Colin Barker, Aug 08 2013: (Start)
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4) for n > 5.
G.f.: x*(x^4 - 2*x^3 - 1)/((x - 1)^3*(x + 1)). (End)
E.g.f.: (2*x + x*(x + 1)*cosh(x) + (x^2 + x - 1)*sinh(x))/2. - Stefano Spezia, Feb 18 2023

Extensions

More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Apr 06 2003

A131478 a(n) = ceiling(n^4/4).

Original entry on oeis.org

0, 1, 4, 21, 64, 157, 324, 601, 1024, 1641, 2500, 3661, 5184, 7141, 9604, 12657, 16384, 20881, 26244, 32581, 40000, 48621, 58564, 69961, 82944, 97657, 114244, 132861, 153664, 176821, 202500, 230881, 262144, 296481, 334084, 375157, 419904, 468541, 521284
Offset: 0

Views

Author

Mohammad K. Azarian, Jul 27 2007

Keywords

Crossrefs

Programs

  • Magma
    [Ceiling(n^4/4) : n in [0..50]]; // Vincenzo Librandi, Oct 01 2011
    
  • Mathematica
    Ceiling[Range[0,40]^4/4] (* Harvey P. Dale, May 17 2019 *)
    CoefficientList[Series[(x(x^3 + 6x^2 + 7x + 1)Cosh[x]+ (x^4 + 6x^3 + 7x^2 + x + 3)Sinh[x])/4,{x,0,35}],x]Table[n!,{n,0,35}] (* Stefano Spezia, Feb 19 2023 *)
  • PARI
    vector(50, n, n--;ceil(n^4/4)) \\ Michel Marcus, Jun 16 2015
    
  • Python
    def A131478(n): return n**4+3>>2 # Chai Wah Wu, Jan 30 2023

Formula

From R. J. Mathar, Dec 19 2008: (Start)
G.f.: x*(1 + 10*x^2 + x^4)/((1 - x)^5*(1 + x)).
a(n) + a(n+1) = A058919(n+1). (End)
a(n) = floor(n^4/4 + 3/4). - Bruno Berselli, Dec 21 2017
E.g.f.: (x*(x^3 + 6*x^2 + 7*x + 1)*cosh(x) + (x^4 + 6*x^3 + 7*x^2 + x + 3)*sinh(x))/4. - Stefano Spezia, Feb 18 2023
Showing 1-2 of 2 results.