A132354 Integers m such that 7*m + 1 is a square.
0, 5, 9, 24, 32, 57, 69, 104, 120, 165, 185, 240, 264, 329, 357, 432, 464, 549, 585, 680, 720, 825, 869, 984, 1032, 1157, 1209, 1344, 1400, 1545, 1605, 1760, 1824, 1989, 2057, 2232, 2304, 2489, 2565, 2760, 2840, 3045, 3129, 3344, 3432, 3657, 3749, 3984, 4080
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (1,2,-2,-1,1).
Crossrefs
Programs
-
Magma
[n^2+n+3*Ceiling(n/2)^2: n in [0..50]]; // Wesley Ivan Hurt, Jul 07 2014
-
Maple
seq(n^2+n+3*ceil(n/2)^2, n=0..48); # Gary Detlefs, Feb 23 2010
-
Mathematica
f[n_]:=IntegerQ[Sqrt[1+7*n]]; Select[Range[0,8! ],f[ # ]&] (* Vladimir Joseph Stephan Orlovsky, Feb 19 2010 *)
Formula
a(2*k) = k*(7*k + 2), a(2*k + 1) = 7*k^2 + 12*k + 5.
a(n) = n^2 + n + 3*ceiling(n/2)^2. - Gary Detlefs, Feb 23 2010
G.f.: -x*(5*x^2 + 4*x + 5)/((x - 1)^3*(x + 1)^2). - Colin Barker, Oct 24 2012
Sum_{n>=1} 1/a(n) = 7/4 - cot(2*Pi/7)*Pi/2. - Amiram Eldar, Mar 15 2022
Extensions
More terms from Max Alekseyev, Nov 13 2009
Better definition from Max Alekseyev, Oct 24 2012
Comments