cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A298699 Primes of the form A132583(k)*42 - 43.

Original entry on oeis.org

419, 5039, 51239, 513239, 5133239, 51333239, 5133333333333239, 513333333333333239, 5133333333333333333239, 5133333333333333333333239, 513333333333333333333333239, 513333333333333333333333333333333333333333333333239
Offset: 1

Views

Author

Paolo Galliani, Jan 27 2018

Keywords

Comments

The corresponding values of k are 0, 1, 2, 3, 4, 5, 13, 15, 19, 22, 24, 48, 59, 187, 215, 232. - Bruno Berselli, Jan 29 2018
Further values of k (below 4000): 394, 441, 506, 541, 569, 1456, 2136, 3510. - Daniel Starodubtsev, Jan 05 2020

Examples

			5039 is prime and 5039 = 121*42 - 43, hence it is in the sequence.
51239 is prime and 51239 = 1221*42 - 43, hence it is in the sequence.
513333239 = 12222221*42 - 43 = 61*1747*4817 is not prime, therefore it is not in the sequence.
		

Crossrefs

Programs

Extensions

a(8)-a(12) from Bruno Berselli, Jan 29 2018

A352341 Numbers whose maximal Pell representation (A352339) is palindromic.

Original entry on oeis.org

0, 1, 3, 6, 8, 10, 20, 27, 40, 49, 54, 58, 63, 68, 88, 93, 119, 136, 150, 167, 221, 238, 288, 300, 310, 322, 334, 338, 360, 372, 382, 394, 406, 508, 530, 542, 696, 737, 771, 812, 833, 867, 908, 942, 983, 1242, 1276, 1317, 1392, 1681, 1710, 1734, 1763, 1792, 1802
Offset: 1

Views

Author

Amiram Eldar, Mar 12 2022

Keywords

Comments

A000129(n) - 2 is a term for n > 1. The maximal Pell representations of these numbers are 0, 11, 121, 1221, 12221, ... (0 and A132583).
A048739 is a subsequence since these are the repunit numbers in the maximal Pell representation.
A065113 is a subsequence since the maximal Pell representation of A065113(n) is 2*n 2's.

Examples

			The first 10 terms are:
   n  a(n)  A352339(a(n))
  --  ----  -------------
   1    0               0
   2    1               1
   3    3              11
   4    6              22
   5    8             111
   6   10             121
   7   20            1111
   8   27            1221
   9   40            2222
  10   49           11111
		

Crossrefs

Programs

  • Mathematica
    pell[1] = 1; pell[2] = 2; pell[n_] := pell[n] = 2*pell[n - 1] + pell[n - 2]; pellp[n_] := Module[{s = {}, m = n, k}, While[m > 0, k = 1; While[pell[k] <= m, k++]; k--; AppendTo[s, k]; m -= pell[k]; k = 1]; IntegerDigits[Total[3^(s - 1)], 3]]; lazy[n_] := Module[{v = pellp[n]}, nv = Length[v]; i = 1; While[i <= nv - 2, If[v[[i]] > 0 && v[[i + 1]] == 0 && v[[i + 2]] < 2, v[[i ;; i + 2]] += {-1, 2, 1}; If[i > 2, i -= 3]]; i++]; i = Position[v, _?(# > 0 &)]; If[i == {}, 0, FromDigits[v[[i[[1, 1]] ;; -1]]]]]; Select[Range[0, 2000], PalindromeQ[lazy[#]] &]

A146884 a(n) = 7*Sum_{k=0..n} 6^k.

Original entry on oeis.org

7, 49, 301, 1813, 10885, 65317, 391909, 2351461, 14108773, 84652645, 507915877, 3047495269, 18284971621, 109709829733, 658258978405, 3949553870437, 23697323222629, 142183939335781, 853103636014693, 5118621816088165
Offset: 0

Views

Author

Roger L. Bagula, Nov 02 2008

Keywords

Crossrefs

Programs

  • Magma
    [n le 2 select 7^n else 7*Self(n-1) -6*Self(n-2): n in [1..31]]; // G. C. Greubel, Oct 12 2022
    
  • Mathematica
    a[n_]:= Sum[7*6^m, {m,0,n}]; Table[a[n], {n,0,30}]
    Accumulate[7*6^Range[0,20]] (* Harvey P. Dale, Dec 18 2021 *)
  • SageMath
    [(7/5)*(6^(n+1)-1) for n in range(41)] # G. C. Greubel, Oct 12 2022

Formula

From G. C. Greubel, Oct 12 2022: (Start)
a(n) = (7/5)*(6^(n+1) - 1).
a(n) = 7*A003464(n+1).
a(n) = 7*a(n-1) - 6*a(n-2).
G.f.: 7/((1-x)*(1-6*x)).
E.g.f.: (7/5)*(6*exp(6*x) - exp(x)). (End)

A146885 a(n) = 8*Sum_{k=0..n} 7^k.

Original entry on oeis.org

8, 64, 456, 3200, 22408, 156864, 1098056, 7686400, 53804808, 376633664, 2636435656, 18455049600, 129185347208, 904297430464, 6330082013256, 44310574092800, 310174018649608, 2171218130547264, 15198526913830856
Offset: 0

Views

Author

Roger L. Bagula, Nov 02 2008

Keywords

Crossrefs

Programs

  • Magma
    [n le 2 select 8^n else 8*Self(n-1) -7*Self(n-2): n in [1..41]]; // G. C. Greubel, Oct 12 2022
    
  • Mathematica
    a[n_]:= Sum[8*7^m, {m,0,n}]; Table[a[n], {n,0,30}]
    LinearRecurrence[{8,-7}, {8,64}, 41] (* G. C. Greubel, Oct 12 2022 *)
  • SageMath
    [(4/3)*(7^(n+1)-1) for n in range(41)] # G. C. Greubel, Oct 12 2022

Formula

From G. C. Greubel, Oct 12 2022: (Start)
a(n) = (4/3)*(7^(n+1) - 1).
a(n) = 8*A023000(n+1).
a(n) = 8*a(n-1) - 7*a(n-2).
G.f.: 8/((1-x)*(1-7*x)).
E.g.f.: (4/3)*(7*exp(7*x) - exp(x)). (End)

A365644 Array read by ascending antidiagonals: A(n, k) = k*(10^n - 1)/9 with k >= 0.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 11, 2, 0, 0, 111, 22, 3, 0, 0, 1111, 222, 33, 4, 0, 0, 11111, 2222, 333, 44, 5, 0, 0, 111111, 22222, 3333, 444, 55, 6, 0, 0, 1111111, 222222, 33333, 4444, 555, 66, 7, 0, 0, 11111111, 2222222, 333333, 44444, 5555, 666, 77, 8, 0
Offset: 0

Views

Author

Stefano Spezia, Sep 14 2023

Keywords

Examples

			The array begins:
  0,     0,     0,     0,     0,     0, ...
  0,     1,     2,     3,     4,     5, ...
  0,    11,    22,    33,    44,    55, ...
  0,   111,   222,   333,   444,   555, ...
  0,  1111,  2222,  3333,  4444,  5555, ...
  0, 11111, 22222, 33333, 44444, 55555, ...
  ...
		

Crossrefs

Cf. A000004 (n=0 or k=0), A001477 (n=1), A002275 (k=1), A002276 (k=2), A002277 (k=3), A002278 (k=4), A002279 (k=5), A002280 (k=6), A002281 (k=7), A002282 (k=8), A002283 (k=9), A008593 (n=2), A053422 (main diagonal), A105279 (k=10), A132583, A177769 (n=3), A365645 (antidiagonal sums), A365646.

Programs

  • Mathematica
    A[n_,k_]:=k(10^n-1)/9; Table[A[n-k,k],{n,0,9},{k,0,n}]//Flatten

Formula

O.g.f.: x*y/((1 - x)*(1 - 10*x)*(1 - y)^2).
E.g.f.: y*exp(x+y)*(exp(9*x) - 1)/9.
A(n, 11) = A132583(n-1) for n > 0.
A(n, 12) = A073551(n+1) for n > 0.

A185123 a(n) = n 9's sandwiched between two 1's.

Original entry on oeis.org

11, 191, 1991, 19991, 199991, 1999991, 19999991, 199999991, 1999999991, 19999999991, 199999999991, 1999999999991, 19999999999991, 199999999999991, 1999999999999991, 19999999999999991, 199999999999999991, 1999999999999999991, 19999999999999999991
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    H[n_]:=10^n+1+Sum[10^i*9,{i,1,n-1}];Array[H,100]
    CoefficientList[Series[(11 + 70*x)/( (1-x)*(1-10*x) ), {x,0,50}], x] (* G. C. Greubel, Jun 23 2017 *)
    Table[10FromDigits[PadRight[{1},n,9]]+1,{n,20}] (* or *) LinearRecurrence[ {11,-10},{11,191},20] (* Harvey P. Dale, May 18 2021 *)
  • PARI
    a(n)=20*10^n-9 \\ Charles R Greathouse IV, Jan 20 2012

Formula

a(n) = 20*10^n - 9. - Charles R Greathouse IV, Jan 20 2012
a(0)=11, a(n) = 10*a(n-1) + 81.
From G. C. Greubel, Jun 22 2017: (Start)
G.f.: (11 + 70*x)/( (1-x)*(1-10*x) ).
E.g.f.: 20*exp(10*x) - 9*exp(x). (End)
Showing 1-6 of 6 results.