A298699
Primes of the form A132583(k)*42 - 43.
Original entry on oeis.org
419, 5039, 51239, 513239, 5133239, 51333239, 5133333333333239, 513333333333333239, 5133333333333333333239, 5133333333333333333333239, 513333333333333333333333239, 513333333333333333333333333333333333333333333333239
Offset: 1
5039 is prime and 5039 = 121*42 - 43, hence it is in the sequence.
51239 is prime and 51239 = 1221*42 - 43, hence it is in the sequence.
513333239 = 12222221*42 - 43 = 61*1747*4817 is not prime, therefore it is not in the sequence.
A352341
Numbers whose maximal Pell representation (A352339) is palindromic.
Original entry on oeis.org
0, 1, 3, 6, 8, 10, 20, 27, 40, 49, 54, 58, 63, 68, 88, 93, 119, 136, 150, 167, 221, 238, 288, 300, 310, 322, 334, 338, 360, 372, 382, 394, 406, 508, 530, 542, 696, 737, 771, 812, 833, 867, 908, 942, 983, 1242, 1276, 1317, 1392, 1681, 1710, 1734, 1763, 1792, 1802
Offset: 1
The first 10 terms are:
n a(n) A352339(a(n))
-- ---- -------------
1 0 0
2 1 1
3 3 11
4 6 22
5 8 111
6 10 121
7 20 1111
8 27 1221
9 40 2222
10 49 11111
-
pell[1] = 1; pell[2] = 2; pell[n_] := pell[n] = 2*pell[n - 1] + pell[n - 2]; pellp[n_] := Module[{s = {}, m = n, k}, While[m > 0, k = 1; While[pell[k] <= m, k++]; k--; AppendTo[s, k]; m -= pell[k]; k = 1]; IntegerDigits[Total[3^(s - 1)], 3]]; lazy[n_] := Module[{v = pellp[n]}, nv = Length[v]; i = 1; While[i <= nv - 2, If[v[[i]] > 0 && v[[i + 1]] == 0 && v[[i + 2]] < 2, v[[i ;; i + 2]] += {-1, 2, 1}; If[i > 2, i -= 3]]; i++]; i = Position[v, _?(# > 0 &)]; If[i == {}, 0, FromDigits[v[[i[[1, 1]] ;; -1]]]]]; Select[Range[0, 2000], PalindromeQ[lazy[#]] &]
A146884
a(n) = 7*Sum_{k=0..n} 6^k.
Original entry on oeis.org
7, 49, 301, 1813, 10885, 65317, 391909, 2351461, 14108773, 84652645, 507915877, 3047495269, 18284971621, 109709829733, 658258978405, 3949553870437, 23697323222629, 142183939335781, 853103636014693, 5118621816088165
Offset: 0
-
[n le 2 select 7^n else 7*Self(n-1) -6*Self(n-2): n in [1..31]]; // G. C. Greubel, Oct 12 2022
-
a[n_]:= Sum[7*6^m, {m,0,n}]; Table[a[n], {n,0,30}]
Accumulate[7*6^Range[0,20]] (* Harvey P. Dale, Dec 18 2021 *)
-
[(7/5)*(6^(n+1)-1) for n in range(41)] # G. C. Greubel, Oct 12 2022
A146885
a(n) = 8*Sum_{k=0..n} 7^k.
Original entry on oeis.org
8, 64, 456, 3200, 22408, 156864, 1098056, 7686400, 53804808, 376633664, 2636435656, 18455049600, 129185347208, 904297430464, 6330082013256, 44310574092800, 310174018649608, 2171218130547264, 15198526913830856
Offset: 0
-
[n le 2 select 8^n else 8*Self(n-1) -7*Self(n-2): n in [1..41]]; // G. C. Greubel, Oct 12 2022
-
a[n_]:= Sum[8*7^m, {m,0,n}]; Table[a[n], {n,0,30}]
LinearRecurrence[{8,-7}, {8,64}, 41] (* G. C. Greubel, Oct 12 2022 *)
-
[(4/3)*(7^(n+1)-1) for n in range(41)] # G. C. Greubel, Oct 12 2022
A365644
Array read by ascending antidiagonals: A(n, k) = k*(10^n - 1)/9 with k >= 0.
Original entry on oeis.org
0, 0, 0, 0, 1, 0, 0, 11, 2, 0, 0, 111, 22, 3, 0, 0, 1111, 222, 33, 4, 0, 0, 11111, 2222, 333, 44, 5, 0, 0, 111111, 22222, 3333, 444, 55, 6, 0, 0, 1111111, 222222, 33333, 4444, 555, 66, 7, 0, 0, 11111111, 2222222, 333333, 44444, 5555, 666, 77, 8, 0
Offset: 0
The array begins:
0, 0, 0, 0, 0, 0, ...
0, 1, 2, 3, 4, 5, ...
0, 11, 22, 33, 44, 55, ...
0, 111, 222, 333, 444, 555, ...
0, 1111, 2222, 3333, 4444, 5555, ...
0, 11111, 22222, 33333, 44444, 55555, ...
...
Cf.
A000004 (n=0 or k=0),
A001477 (n=1),
A002275 (k=1),
A002276 (k=2),
A002277 (k=3),
A002278 (k=4),
A002279 (k=5),
A002280 (k=6),
A002281 (k=7),
A002282 (k=8),
A002283 (k=9),
A008593 (n=2),
A053422 (main diagonal),
A105279 (k=10),
A132583,
A177769 (n=3),
A365645 (antidiagonal sums),
A365646.
-
A[n_,k_]:=k(10^n-1)/9; Table[A[n-k,k],{n,0,9},{k,0,n}]//Flatten
A185123
a(n) = n 9's sandwiched between two 1's.
Original entry on oeis.org
11, 191, 1991, 19991, 199991, 1999991, 19999991, 199999991, 1999999991, 19999999991, 199999999991, 1999999999991, 19999999999991, 199999999999991, 1999999999999991, 19999999999999991, 199999999999999991, 1999999999999999991, 19999999999999999991
Offset: 0
-
H[n_]:=10^n+1+Sum[10^i*9,{i,1,n-1}];Array[H,100]
CoefficientList[Series[(11 + 70*x)/( (1-x)*(1-10*x) ), {x,0,50}], x] (* G. C. Greubel, Jun 23 2017 *)
Table[10FromDigits[PadRight[{1},n,9]]+1,{n,20}] (* or *) LinearRecurrence[ {11,-10},{11,191},20] (* Harvey P. Dale, May 18 2021 *)
-
a(n)=20*10^n-9 \\ Charles R Greathouse IV, Jan 20 2012
Showing 1-6 of 6 results.
Comments