A132592 X-values of solutions to the equation X*(X + 1) - 8*Y^2 = 0.
0, 8, 288, 9800, 332928, 11309768, 384199200, 13051463048, 443365544448, 15061377048200, 511643454094368, 17380816062160328, 590436102659356800, 20057446674355970888, 681362750825443653408, 23146276081390728245000, 786292024016459316676608, 26710782540478226038759688
Offset: 0
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..500
- Index entries for linear recurrences with constant coefficients, signature (35,-35,1).
Crossrefs
Programs
-
Magma
I:=[0,8,288]; [n le 3 select I[n] else 35*Self(n-1)-35*Self(n-2)+ Self(n-3): n in [1..30]]; // Vincenzo Librandi, Dec 24 2018
-
Mathematica
Table[Round[N[Sinh[2 n ArcCosh[Sqrt[2]]]^2, 100]], {n, 0, 20}] (* Artur Jasinski, Feb 10 2010 *) LinearRecurrence[{35, -35, 1}, {0, 8, 288}, 30] (* Vincenzo Librandi, Dec 24 2018 *)
-
Python
A132592 = [0, 8] for n in range(2, 18): A132592.append(34 * A132592[-1] - A132592[-2] + 16) print(A132592) # Karl-Heinz Hofmann, Sep 20 2022
Formula
a(0)=0, a(1)=8 and a(n) = 34*a(n-1) - a(n-2) + 16.
a(n) = (A056771(n) - 1)/2. - Max Alekseyev, Nov 13 2009
a(n) = sinh(2*n*arccosh(sqrt(2))^2) (n=0,1,2,3,...). - Artur Jasinski, Feb 10 2010
G.f.: -8*x*(x+1)/((x-1)*(x^2-34*x+1)). - Colin Barker, Oct 24 2012
Extensions
More terms from Max Alekseyev, Nov 13 2009
Comments