cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A007387 Number of 3rd-order maximal independent sets in cycle graph.

Original entry on oeis.org

0, 2, 3, 2, 5, 2, 7, 2, 9, 7, 11, 14, 13, 23, 20, 34, 34, 47, 57, 67, 91, 101, 138, 158, 205, 249, 306, 387, 464, 592, 713, 898, 1100, 1362, 1692, 2075, 2590, 3175, 3952, 4867, 6027, 7457, 9202, 11409, 14069, 17436, 21526, 26638, 32935, 40707, 50371, 62233
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • R. Yanco and A. Bagchi, "K-th order maximal independent sets in path and cycle graphs," J. Graph Theory, submitted, 1994.

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 50); [0] cat Coefficients(R!( x^2*(2+3*x+2*x^3-3*x^6)/(1-x^2-x^5) )); // G. C. Greubel, Oct 19 2019
    
  • Maple
    seq(coeff(series(x^2*(2+3*x+2*x^3-3*x^6)/(1-x^2-x^5), x, n+1), x, n), n = 1..50); # G. C. Greubel, Oct 19 2019
  • Mathematica
    Rest[CoefficientList[Series[x^2*(2+3*x+2*x^3-3*x^6)/(1-x^2-x^5), {x, 0, 50}], x]] (* Harvey P. Dale, Oct 23 2011 *)
  • PARI
    my(x='x+O('x^50)); concat([0], Vec(x^2*(2+3*x+2*x^3-3*x^6)/(1-x^2-x^5))) \\ G. C. Greubel, Oct 19 2019
    
  • Sage
    def A007387_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P(x^2*(2+3*x+2*x^3-3*x^6)/(1-x^2-x^5)).list()
    a=A007387_list(50); a[1:] # G. C. Greubel, Oct 19 2019

Formula

For n >= 9: a(n) = a(n-2) + a(n-5) per A133394. - G. Reed Jameson (Reedjameson(AT)yahoo.com), Dec 13 2007, Dec 16 2007
G.f.: x^2*(2 + 3*x + 2*x^3 - 3*x^6)/(1 - x^2 - x^5). - R. J. Mathar, Oct 30 2009
a(n) = Sum_{j=0..floor((n-g)/(2*g))} (2*n/(n-2*(g-2)*j-(g-2))) * Hypergeometric2F1([-(n-2g*j-g)/2,-(2j+1)], [1], 1), with g = 5, n >= g, and n an odd integer. - Richard Turk, Oct 14 2019

Extensions

More terms from Harvey P. Dale, Oct 23 2011

A135435 a(n) = a(n-4) + a(n-7) with a(0), ..., a(6) = [7,0,0,0,4,0,0].

Original entry on oeis.org

7, 0, 0, 0, 4, 0, 0, 7, 4, 0, 0, 11, 4, 0, 7, 15, 4, 0, 18, 19, 4, 7, 33, 23, 4, 25, 52, 27, 11, 58, 75, 31, 36, 110, 102, 42, 94, 185, 133, 78, 204, 287, 175, 172, 389, 420, 253, 376, 676, 595, 425, 765, 1096, 848, 801, 1441, 1691, 1273, 1566, 2537, 2539, 2074, 3007, 4228
Offset: 0

Views

Author

G. Reed Jameson (Reedjameson(AT)yahoo.com), Dec 13 2007, Dec 16 2007

Keywords

Comments

Of interest because {7,11} is the earliest pair of typical primes belonging to a single hexad. Herein "pseudoprime" means sequence-specific psp. (i.e. dividing its term with rem. 0), not general number-theoretic psp. The only psp.s of concern, from the standpoint of primality testing, being those congruent to 1 or 5 (mod 6), are the six quadratics of the present zero-termed primes 5,13,17 the only relevant psp.s of this sequence? Or are there additional examples > 289?

Crossrefs

Cf. A133394.

Programs

  • Mathematica
    LinearRecurrence[{0,0,0,1,0,0,1},{7,0,0,0,4,0,0},70] (* Harvey P. Dale, Jan 20 2013 *)
  • PARI
    Vec((7-3*x^4)/(1-x^4-x^7) + O(x^80)) \\ Michel Marcus, Oct 14 2016

Formula

G.f.: (7-3*x^4)/(1-x^4-x^7). - R. J. Mathar, Oct 24 2009

Extensions

More terms from R. J. Mathar, Oct 24 2009

A136598 Expansion of g.f. (2*x^3 + 5) / ( -x^5 + x^3 + 1).

Original entry on oeis.org

5, 0, 0, -3, 0, 5, 3, 0, -8, -3, 5, 11, 3, -13, -14, 2, 24, 17, -15, -38, -15, 39, 55, 0, -77, -70, 39, 132, 70, -116, -202, -31, 248, 272, -85, -450, -303, 333, 722, 218, -783, -1025, 115, 1505, 1243, -898, -2530, -1128, 2403, 3773, 230, -4933, -4901, 2173, 8706, 5131, -7106, -13607
Offset: 0

Views

Author

Michael Somos, Jan 11 2008

Keywords

Examples

			5 - 3*x^3 + 5*x^5 + 3*x^6 - 8*x^8 - 3*x^9 + 5*x^10 + 11*x^11 + 3*x^12 - ...
		

Crossrefs

Cf. A133394.

Programs

  • PARI
    {a(n) = if( n<0, n = 1 - n; polsym(x^5 - x^3 - 1, n)[n], n++; polsym(x^5 + x^2 - 1, n)[n])}

Formula

a(n) = -a(n-3) + a(n-5). a(-n) = A133394(n).
Showing 1-3 of 3 results.