A007387 Number of 3rd-order maximal independent sets in cycle graph.
0, 2, 3, 2, 5, 2, 7, 2, 9, 7, 11, 14, 13, 23, 20, 34, 34, 47, 57, 67, 91, 101, 138, 158, 205, 249, 306, 387, 464, 592, 713, 898, 1100, 1362, 1692, 2075, 2590, 3175, 3952, 4867, 6027, 7457, 9202, 11409, 14069, 17436, 21526, 26638, 32935, 40707, 50371, 62233
Offset: 1
Keywords
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- R. Yanco and A. Bagchi, "K-th order maximal independent sets in path and cycle graphs," J. Graph Theory, submitted, 1994.
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
- R. Yanco, Letter and Email to N. J. A. Sloane, 1994
- R. Yanco and A. Bagchi, K-th order maximal independent sets in path and cycle graphs, Unpublished manuscript, 1994. (Annotated scanned copy)
Programs
-
Magma
R
:=PowerSeriesRing(Integers(), 50); [0] cat Coefficients(R!( x^2*(2+3*x+2*x^3-3*x^6)/(1-x^2-x^5) )); // G. C. Greubel, Oct 19 2019 -
Maple
seq(coeff(series(x^2*(2+3*x+2*x^3-3*x^6)/(1-x^2-x^5), x, n+1), x, n), n = 1..50); # G. C. Greubel, Oct 19 2019
-
Mathematica
Rest[CoefficientList[Series[x^2*(2+3*x+2*x^3-3*x^6)/(1-x^2-x^5), {x, 0, 50}], x]] (* Harvey P. Dale, Oct 23 2011 *)
-
PARI
my(x='x+O('x^50)); concat([0], Vec(x^2*(2+3*x+2*x^3-3*x^6)/(1-x^2-x^5))) \\ G. C. Greubel, Oct 19 2019
-
Sage
def A007387_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P(x^2*(2+3*x+2*x^3-3*x^6)/(1-x^2-x^5)).list() a=A007387_list(50); a[1:] # G. C. Greubel, Oct 19 2019
Formula
For n >= 9: a(n) = a(n-2) + a(n-5) per A133394. - G. Reed Jameson (Reedjameson(AT)yahoo.com), Dec 13 2007, Dec 16 2007
G.f.: x^2*(2 + 3*x + 2*x^3 - 3*x^6)/(1 - x^2 - x^5). - R. J. Mathar, Oct 30 2009
a(n) = Sum_{j=0..floor((n-g)/(2*g))} (2*n/(n-2*(g-2)*j-(g-2))) * Hypergeometric2F1([-(n-2g*j-g)/2,-(2j+1)], [1], 1), with g = 5, n >= g, and n an odd integer. - Richard Turk, Oct 14 2019
Extensions
More terms from Harvey P. Dale, Oct 23 2011
Comments